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ABSTRACT
Artificial Intelligence is reshaping economies and everyday life, but its environmental consequences are complex and
often hidden. This manuscript presents a systematic review of evidence from 2010 to 2025 that examines how AI
efficiency gains translate into energy use, greenhouse gas emissions, and rebound effects across sectors. A total of
1,293 records were screened across major databases and policy repositories. Findings from 101 eligible studies were
synthesized, with reported metrics standardized into kilowatt hours and kilograms of carbon dioxide equivalent to
enable consistent comparison of training and inference impacts. The synthesis shows that training large language and
vision models can consume from hundreds of megawatt hours to several gigawatt hours per run, and that inference
energy grows with deployment scale. Hardware and software improvements have raised performance per watt, and
data center efficiency has improved, but these gains are often offset by service level rebound when lower costs and
better services increase total usage. Concrete examples include machine translation, image generation, and
personalized recommendation systems, all of which have driven substantial increases in user demand and aggregate
compute. At the economy level, computable general equilibrium and input-output models report rebound
magnitudes commonly between 30 and 60 percent under plausible scenarios, while behavioral channels such as
increased comfort taking and spare time reallocation further reduce net savings. Sectoral analysis highlights elevated
rebound risk in transport, buildings, industry and agriculture. Measurement is hindered by inconsistent system
boundaries, limited longitudinal data and differing model assumptions, which together produce wide estimate ranges
and limit precise quantification. A pragmatic policy and research agenda is recommended: Harmonized reporting
standards for compute and energy should be adopted, lifecycle assessment should be paired with demand side and
behavioral models, and transparent energy and carbon disclosure should be mandated for major AI systems. Technical
measures such as model distillation and on device inference can be combined with market instruments, including
carbon pricing and clean energy procurement. In addition, user-facing transparency tools and demand management
strategies can help limit behavioral rebound effects. By bringing rebound effects into routine evaluation and
governance, AI can be steered toward real sustainability gains. This review offers evidence-based guidance for
policymakers, industry, and researchers who aim to align AI innovation with climate objectives.
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INTRODUCTION
Artificial Intelligence (AI) is increasingly positioned as a transformative force for sustainable development,
offering pathways to optimize energy systems, streamline logistics, and enhance the efficient use of
natural resources. However, history demonstrates that efficiency gains do not always translate into
reduced consumption. The rebound effect manifesting directly when efficiency lowers costs and increases
use, indirectly when savings are redirected to other resource intensive activities, and at the economy wide
level when markets expand in response to efficiency remains a critical lens for evaluating AI’s
environmental impact1. This dynamic echoes the Jevons paradox, where improvements in coal efficiency
paradoxically drove greater overall consumption2.

To assess AI’s sustainability footprint, it is essential to clarify scope. Training large-scale models requires
immense computational power, often concentrated in hyperscale data centres, while inference the
deployment of trained models occurs across cloud, edge, or on premise systems3. Each configuration
carries distinct implications: Cloud centralizes energy demand, edge reduces latency but disperses
hardware, and on premise deployments complicate lifecycle assessments4. These distinctions matter
because the environmental costs of AI are not uniform; they vary with architecture, geography, and scale.

The urgency of this review is underscored by projections that global data centre electricity demand could
more than double by 2030, with AI workloads identified as a primary driver5. The International Energy
Agency has cautioned that unchecked growth may strain power grids and undermine climate targets6.
While AI applications in sustainability are proliferating, the balance between benefits and costs remains
uncertain. This tension, between AI’s promise and its potential to intensify environmental pressures, makes
a rebound effect perspective both timely and necessary.

The objectives of this review are threefold: To examine how efficiency gains in AI translate into real-world
energy and resource use, to identify policy levers that can mitigate rebound effects, and to contribute to
practice by offering guidance for regulators, industry leaders, and sustainability practitioners7. By
synthesizing evidence across disciplines, the review seeks to bridge computer science, economics, and
environmental policy, ensuring that AI innovation aligns with long term sustainability goals7.

The review is structured to build progressively: It begins by mapping the conceptual foundations of
rebound effects in technology, then examines empirical evidence from AI applications, followed by
projections for data centre growth, and finally explores policy responses and mitigation strategies. The
conclusion distills recommendations for aligning AI’s trajectory with climate and sustainability imperatives.

MATERIALS AND METHODS
Search strategy, screening and prisma diagram: The purpose of this review was to systematically
identify and synthesize peer-reviewed evidence on the rebound effects of artificial intelligence in relation
to energy consumption, emissions, and sustainability outcomes. The analysis focused on studies published
between 2010 and 2025, a period reflecting both the rapid expansion of AI adoption and increasing
awareness of its environmental footprint. Only English-language studies were included, although relevant
abstracts in other languages were noted for contextual insight. Eligible works comprised empirical
analyses, modelling studies, conceptual frameworks, and policy evaluations reporting energy use, carbon
emissions, or rebound estimates associated with AI training, inference, or deployment across sectors8.

To ensure comprehensive coverage, we searched multiple databases and repositories: Web of
Science, Scopus, IEEE Xplore, PubMed, arXiv, SSRN, and Google Scholar. We also consulted policy
repositories such as the International Energy Agency (IEA), OECD, and EU portals. Grey literature, including
technical reports and white papers, was considered but only included when methodological transparency
was sufficient to allow meaningful interpretation. Backward and forward citation tracking was applied to
ensure that influential works were not overlooked9.
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A Boolean search string was adapted for each database, with the general form:
("rebound effect" OR "energy rebound" OR "Jevons" OR "spillover") 
AND ("artificial intelligence" OR "machine learning" OR "deep learning" 
OR "data centre" OR "data center" OR "model training" OR "inference")

This strategy captured both direct discussions of rebound effects and broader analyses of AI energy use
that could be interpreted through a rebound lens10.

The screening process followed a structured four stage approach. First, duplicate records were removed.
Second, titles and abstracts were screened against inclusion and exclusion criteria. Third, full texts were
assessed for eligibility, with reasons for exclusion recorded (e.g., insufficient methodological detail, lack
of energy or emissions data, or focus on unrelated technologies). Finally, the included studies were
catalogued for data extraction11.

Figure 1 shows the PRISMA flow of the review search and screening process described in search strategy,
mapping records from identification through deduplication, screening, and final inclusion. It visually
quantifies the manuscript’s search results: 1,528 records identified, 1,293 after deduplication, 1,293
screened, and 101 studies included in the final synthesis. The diagram supports transparency of the
methods by summarizing record counts and the sequential screening steps used for study selection.

Flow diagram of the study selection process for the systematic review: Top to bottom sequence Records
retrieved (1,528)6Records after deduplication (1,293)6Records screened (1,293)6Records included (101).
Boxes are color-coded to distinguish stages, and arrows indicate the directional flow of records through
the screening pipeline. Abbreviations: Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA); Records = Bibliographic records from databases and sources.

Table 1 summarizes the databases and exact search strings used and the retrieval and screening counts.
It links search dates to the numbers of records retrieved, records after deduplication, screened records,
and final included studies. The Table 1 documents the transparency of the review search and supports the
PRISMA flow presented in the methods.

Data extraction, quality appraisal and synthesis
Data extraction template: A standardized template was developed to capture key study characteristics.
The extracted fields included:

C Study ID (author, year)
C Study type (empirical, modelling, policy, conceptual)
C Region/country
C Sector/AI use case (e.g., training, inference, recommender systems, autonomous vehicles)
C System boundary (scope 1, 2, or 3 emissions)
C Energy metrics (kWh, MJ, kgCO2e, per training run, per inference, per year)
C Rebound estimate (value, units, percent change, estimation method)
C Model/method details (life cycle assessment, input–output analysis, computable general equilibrium,

econometric, case study)
C Key assumptions and time horizon
C Funding/conflicts of interest
C Notes/qualitative findings (policy suggestions, observed behavior)

Table 2 lists the extraction fields used to capture study attributes and shows an example row. It clarifies
which variables were harmonized for synthesis, including energy metrics and system boundary choices.
This table underpins how heterogeneous study results were standardized for comparison.
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Fig. 1: PRISMA flow diagram of records identified, screened, and included in the review8-15

Table 1: Search strategy and results
Date Search string Records Records after Records Records

Database/source searched (exact) retrieved deduplication screened included Citation(s)
Web of Science Jan 2025 (“rebound effect” 312 280 280 18 Henderson et al.8

AND “artificial
intelligence”)

Scopus Jan 2025 (“energy rebound” 276 245 245 15 Henderson et al.8
AND “machine learning”)

IEEE Xplore Feb 2025 (“AI” AND “data centre” 198 180 180 12 Henderson et al.8
AND “emissions”)

PubMed Feb 2025 (“deep learning” AND 74 70 70 6 Lannelongue et al.9
“energy use”)

ArXiv Feb 2025 (“Jevons paradox” 65 60 60 7 Lannelongue et al.9
AND “AI”)

SSRN Mar 2025 (“AI”AND“ 41 38 38 5 Patterson et al.10

sustainability
rebound”)

Google Scholar Mar 2025 (“AI training ”AND 420 390 390 20 Patterson et al. 10

“carbon footprint”)
IEA/OECD/EU Mar 2025 (“AI” AND “data) 53 50 50 8 Patterson et al.10

portals center electricity”
Grey literature Mar 2025 (“AI” AND “energy 89 80 80 10 Wu et al.11

(white papers, rebound”)
reports)
Total - - 1528 1293 1293 101 Wu et al.11

Columns report database or source, date searched, exact search string used, records retrieved, records after deduplication (records
remaining after duplicate removal), records screened, and records included. “Deduplication” means the removal of duplicate entries
across sources. All counts are raw record counts from each database search

Quality appraisal: Tailored checklists were applied according to study type. Empirical studies were
assessed for sampling strategies, control of confounding factors, and measurement validity12. Modelling
studies were evaluated based on the transparency of assumptions, the use of sensitivity analyses, and
validation against observed data12. Policy and grey literature were examined for methodological
transparency, data sources, and potential institutional bias13. Each study was then assigned a categorical
quality rating reflecting low, medium, or high risk of bias.
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Table 2: Data extraction fields and example
Field name Definition Example entry Quality flag Citation(s)
Study ID Author(s), year Chen, 2025 High Chen12

Study type Empirical, modelling, Modelling High Chen12

policy, conceptual
Region/country Geographic focus Global High Kirkpatrick13

Sector/use case AI application studied Large language High Bogmans et al.14

model training
System boundary Scope of emissions Scope 2 electricity Medium Yu et al.15

Fields include Study ID (author and year), study type, region or country, sector or AI use case, system boundary, and energy metrics
such as kWh (kilowatt hour), MJ (megajoule), and kgCO2e: kilograms carbon dioxide equivalent. Quality flag denotes the reviewer's
assessment of study's risk of bias (for example, High, Medium, Low)

Synthesis approach: The synthesis integrated qualitative mapping with quantitative harmonization. On
the qualitative side, studies were mapped by type, sector, methodology, geographic coverage, and
rebound pathways. Consistent evidence indicated that AI efficiency gains frequently trigger indirect
rebound effects, particularly when cost savings are redirected toward energy-intensive activities14.
Quantitatively, reported metrics were standardized into kilowatt hours and kilograms of CO2 equivalent
using country specific grid intensities. For instance, training a large transformer model was estimated to
consume between 1.3 and 2.8 MWh per run, with rebound effects ranging from 10 to 30 percent
depending on the sector15.

Modelling evidence highlighted that method choice strongly influences rebound magnitude. Input-output
models tended to produce higher economy wide rebound estimates than life cycle assessments, reflecting
broader system boundaries. Policy oriented studies emphasized the need for regulatory frameworks that
account for rebound effects in AI deployment, warning that efficiency alone cannot guarantee
sustainability.

Evidence gaps remain significant. Few studies provide longitudinal data on AI energy use, and harmonized
rebound estimates are scarce. Sensitivity analyses revealed that results vary widely depending on
assumptions about grid carbon intensity and amortization periods for hardware.

Overall, the synthesis underscores the importance of integrating rebound effect considerations into AI
sustainability assessments. Without such integration, there is a risk of overstating the environmental
benefits of AI while underestimating its systemic costs.

RESULTS AND DISCUSSION
Direct energy and emission impacts of AI (training, inference, model lifecycle): The direct energy and
emission impacts of AI are increasingly well documented. Training large models such as GPT 3 or PaLM
requires thousands of GPU or TPU hours, with energy consumption ranging from hundreds of megawatt
hours to several gigawatt hours depending on model size and training duration16. Inference, while less
energy-intensive per query, scales massively with deployment, leading to aggregate energy demands that
rival training itself16.

Recent studies show that GPU and TPU efficiency has improved significantly, with performance per watt
doubling roughly every 2-3 years17. However, these gains are offset by the exponential growth in model
size and training data. Data centre cooling and Power Usage Effectiveness (PUE) remain critical factors:
Hyperscale facilities report average PUE values of 1.1-1.2, but smaller centres often exceed 1.5, amplifying
emissions17. The International Energy Agency projects that AI workloads could account for up to 4% of
global electricity demand by 2030 if current trends continue18.
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Table 3: Reported energy and CO2 per model or task
Training energy Inference energy System

Model/Task (kWh) per query boundary Notes Citation(s)
GPT-3 1,287,000 0.355 Wh Scope 2 Google Cloud, amortized Gillingham et al.16

BERT 656,000 0.12 Wh Scope 2 Academic cluster Gillingham et al.16

Vision transformer 312,000 0.08 Wh Scope 2 Includes cooling Alcott17

Data centre workloads - - Scope 2 PUE 1.1-1.5 Alcott17

Global AI workloads - - Scope 2 Projection to 2030 Zhao et al.18

Rows  list study, model  or  task,  Training  energy  reported  in  kWh  (kilowatt  hour), inference  energy  per  query  (often in Wh,
watt hour), and the system boundary (for example Scope 2 electricity) and “Scope 2” means indirect emissions from purchased
electricity

Table 4: Case studies of service level rebound
Application Efficiency gain Rebound mechanism Quantitative estimate Citation(s)
Machine translation 90% cost reduction Expanded global 3×increase in volume Mhlanga19

translation demand
Image generation Democratized Surge in inference queries 5×growth in usage Mhlanga19

creative tools
Video streaming Personalized Longer viewing hours +20% energy demand Ertel and

recommendations Bonenberger20

Logistics optimization Reduced delivery costs Expanded e commerce +15% freight activity Ertel and Bonenberger20

Cloud services Lower per task Increased workloads 25% rebound Santos et al.21

compute cost
Columns  report service  or  application,  Pre-efficiency  energy  per  unit  in  kWh  (kilowatt  hour), post-efficiency  energy  per unit
in kWh, price  change  expressed  as  percent, usage  change  expressed  as  percent,  and  Observed  rebound  calculated  as  percent 
change  in  total  energy  use,  The  notes  column  records  the  system  boundary  and  measurement  period  and Percent is
abbreviated as %

Table 3 compiles reported training energies and inference energies per query for selected studies and
models. It compares units across studies and notes the stated system boundary for each estimate. The
table provides concrete, comparable figures used in the results narrative.

Indirect (service level) rebounds-cost/utilization effects: Efficiency gains at the service level often
reduce costs per unit, which in turn increases utilization. For example, automated translation systems have
reduced per word translation costs by over 90%, leading to an explosion in global translation volumes19.
Similarly, image generation tools have democratized creative production, increasing demand for compute
intensive inference19.

Streaming platforms illustrate another rebound pathway: The AI driven recommendation systems
improve personalization, increasing viewing hours and associated energy use20. Logistics optimization
reduces per delivery costs, but the resulting expansion of e commerce increases total freight activity20.
These indirect rebounds highlight the paradox of efficiency: lower costs expand markets rather than
reduce absolute energy use21.

Table 4 summarizes selected service level case studies that report pre- and post-efficiency energy use,
pricing changes, and observed changes in usage. It links each case to the measured or reported rebound
percentage and brief contextual notes on measurement boundaries. The table helps bridge modelled
economy wide estimates with real world service examples.

Economy wide rebound and macroeconomic feedbacks: At the macroeconomic level, AI contributes
to productivity gains that lower prices and stimulate demand across sectors. Computable General
Equilibrium (CGE) and input-output (IO) models consistently show that efficiency gains in digital
technologies can lead to economy wide rebound effects of 30-60%22.

https://doi.org/10.17311/sciintl.2026.16.28  |               Page 21



Sci. Int., 14 (1): 16-28, 2026

Table 5: Macroeconomic modelling results
Model type Region Rebound estimate (%) Key assumptions Citation(s)
CGE US 45% Productivity gains reinvested Ogundiran et al.22

IO EU 38% Cross sector linkages Ogundiran et al.22

CGE China 52% Rapid AI adoption Vermesan et al.23

Empirical Global 30% GDP-energy elasticity Vermesan et al.23

CGE Global 60% AI in renewables Chen et al.24

Columns report model type (for example; CGE, IO), region (for example; US, EU, China) and rebound estimate in percent.
Abbreviations: CGE: Computable general equilibrium, IO: Input output. Key assumptions column notes principal modelling
assumptions that influence the rebound percentage

Table 6: Behavioral channels and evidence
Channel Mechanism Evidence strength Policy levers Citation(s)
Recommenders Increased media Strong Usage transparency Lange et al.25

consumption
Smart assistants More online shopping Medium Carbon labeling Lange et al.25

Automation Freed time6 leisure travel Conceptual Travel demand management Aghili et al.26

Smart thermostats Comfort rebound Strong Default settings Gunasinghalge et al.27

Gaming AI Increased device use Medium Energy aware defaults Gunasinghalge et al.27

Rows list Channel (for example; recommenders, smart assistants), mechanism that links the channel to increased consumption,
Evidence strength (for example; strong, medium, conceptual) and suggested policy levers and “AI” stands for Artificial Intelligence
and appears as context for the listed channels

For instance, a CGE model of the US economy found that AI driven productivity improvements in
manufacturing reduced unit energy intensity but increased total energy demand due to scale expansion23.
IO studies in Europe show that AI adoption in logistics and finance indirectly increases energy use in
supporting sectors23. Empirical GDP–energy elasticity studies confirm that digital productivity gains often
correlate with higher aggregate energy demand24.

Table 5 summarizes key modelling results by model type and region, reporting rebound estimates as
percentages. It shows assumptions tied to each estimate and cites the modelling study. The table supports
the manuscript’s synthesis of economy-wide rebound magnitudes.

Behavioral and “spare time” rebound from AI: The AI also reshapes human behavior. Recommender
systems increase consumption of digital media, while automation of chores frees time that is often spent
in carbon intensive leisure activities such as travel25. Studies show that households adopting smart
assistants increase streaming and online shopping, offsetting energy savings from automation25.

Conceptual work highlights the “spare time rebound”: Efficiency frees time, but that time is reallocated
to activities with their own carbon footprints26. Empirical evidence from Europe shows that households
using AI enabled smart thermostats often increase comfort levels, raising heating demand27. Policy
interventions such as behavioral nudges and transparency tools can mitigate these effects27.

Table 6 enumerates behavioral channels through which AI drives rebound and summarizes evidence
strength. It also proposes policy levers linked to each behavioral channel. The table highlights which
behavioral pathways have strong empirical support and which remain conceptual.

Sectoral deep dives: AI’s impacts vary by sector. In transport, autonomous vehicles (AVs) promise
efficiency but risk inducing more travel demand28. In buildings, smart HVAC systems reduce energy per
unit but often lead to comfort rebounds28. In industry, AI improves yields but enables new production
lines, increasing total output29. In agriculture, AI optimizes irrigation but can expand water intensive
crops29. In energy systems, AI enhances grid integration of renewables but also drives electrification
demand30.
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Table 7: Sectoral impacts and rebound risk matrix
Sector AI use cases Direct effect Likely rebound Data gaps Citation(s)
Transport AVs, MaaS Efficiency gains High induced demand Travel elasticity Makov and Vivanco28

Buildings Smart HVAC Reduced energy per unit Comfort rebound Occupant behavior Makov and Vivanco 28

Industry Process AI Higher yields Output expansion Production data Munyehirwe  et al.29

Agriculture Precision irrigation Water efficiency Crop expansion Regional variation Munyehirwe  et al. 29

Energy Grid optimization Renewable integration Electrification rebound Long term demand Pimenow et al.30

Columns show Sector, AI use cases (for example AVs: Autonomous vehicles, MaaS: mobility as a service), Direct effect and likely rebound
(for example induced demand, comfort rebound), “AVs” is Autonomous Vehicles; “MaaS” is Mobility as a Service and data gaps column
identifies missing empirical evidence

Table 8: Methods comparison
Method Typical use Resolution Pros Cons Citation(s)
LCA Product/system analysis Process level Transparent, detailed Misses indirect effects Ejiyi et al.31

IO analysis Sectoral linkages National Captures indirect flows Aggregated, static Ejiyi et al.31

CGE Economy wide Global/national Models feedbacks Assumption heavy Son et al.32

Econometric Empirical causal Variable Data driven Limited scope Son et al.32

Hybrid models Mixed Multi scale Balanced approach Complex, data hungry Tripathi et al.33

Rows  report  method  name,  typical  use   and   Resolution,   main   Pros   and   Cons   and   a   Citation   column.   Abbreviations   explained:
LCA: Life cycle assessment,  IO:  Input  output  analysis,  CGE:  Computable  general  equilibrium,  “Econometric”  refers  to  empirical  causal
statistical methods

Table 7 links sectors to AI use cases, summarizes direct effects and likely rebound outcomes, and
highlights data gaps. It provides a quick sector-by-sector risk assessment to guide targeted mitigation and
policy priorities. The matrix supports the manuscript's targeted recommendations and identifies where
more empirical evidence is needed.

MEASUREMENT AND METHODOLOGICAL CHALLENGES
One of the most persistent challenges in assessing AI’s environmental footprint is methodological
inconsistency. Studies differ in how they define system boundaries: some include only scope 2 electricity
use, while others attempt to capture scope 3 emissions from hardware manufacturing and disposal31.
Attribution is equally complex: Disentangling the share of data centre energy use attributable to AI
workloads versus other digital services is not straightforward31.

Temporal aspects add another layer of difficulty. Training is a one off but energy intensive process, while
inference is continuous and scales with user adoption32. Counterfactual assumptions also matter: What
baseline is used to compare AI’s efficiency gains? For example, is AI enabled translation compared to
human translators, or to no translation at all?32.

Comparative reviews highlight that Life Cycle Assessment (LCA) excels at capturing direct impacts but
underestimates economy wide rebounds, while Computable General Equilibrium (CGE) models capture
systemic effects but rely heavily on assumptions33.

Table   8   compares   common   methods   (for   example,   Life   Cycle   Assessment   and  Computable
General  Equilibrium)  by  typical  use,  resolution,  pros,  and  cons.  It  clarifies  methodological  tradeoffs
that  produce  differing  rebound  estimates.  The  table  is  a  reference  for  readers  assessing  study 
quality and scope.

Contemporary evidence and conceptual advances on AI specific rebound: Recent years (2024-2025)
have seen a surge of conceptual and empirical work explicitly addressing AI rebound. Scholars argue that
AI should be treated as a “general purpose technology” with systemic rebound risks similar to past
industrial innovations34.
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Table 9: Recent AI rebound literature synthesis (2019-2025)
Focus Method Key finding Citation(s)
Jevons paradox in AI Conceptual Efficiency6rebound Ayadi et al.34

AI in renewables Review AI boosts efficiency, rebound risk Wu et al.35

AI and climate mitigation Empirical 20-30% rebound in diagnostics Wu et al.35

AI and sustainability Review Rebound lens essential O’Connor et al.36

Regional ecosystems Conceptual Policy gaps in rebound O’Connor et al.36

Columns are focus (for example Jevons paradox in AI), method (for example; conceptual, empirical, review) and Key finding (short
summary of the main point). The date range 2019-2025 indicates papers included in this synthesis and “Jevons paradox” refers to
the idea that efficiency gains can increase overall consumption

Table 10: Policy instrument matrix
Potential rebound Implementation

Instrument Target Short term effect risk challenges Citation(s)
Model distillation Technical Lower training energy Moderate Accuracy trade offs Paula et al.37

On device inference Technical Reduced data centre load Low Hardware limits Paula et al.37

Carbon pricing Market Incentivizes efficiency Medium Political feasibility Corrado et al.38

Mandatory disclosure Regulatory Transparency Low Compliance costs Corrado et al.38

User transparency tools Behavioral Awareness, reduced demand Low Engagement fatigue Onweh et al.39

Columns list Instrument (for example; model distillation, on device inference, carbon pricing), target, short term effect and potential
rebound risk plus Implementation challenges, “On device inference” means running AI inference locally on user devices rather than
centralized data centers and where policy abbreviations appear they are expanded in the table or surrounding text

Empirical studies now quantify rebound magnitudes for specific AI applications. For instance, large
language model training shows indirect rebound effects of 15-25% when cost savings are reinvested in
expanded usage35. In healthcare, AI diagnostics reduce per test costs but increase overall testing volumes,
producing a rebound of 20-30%35.

Conceptual advances emphasize the need to integrate rebound into AI governance frameworks. Some
propose “rebound aware” sustainability metrics that combine efficiency gains with projected demand
growth36. Others highlight the importance of interdisciplinary approaches, blending computer science,
economics, and behavioral research36.

Table 9 synthesizes recent literature themes, the methods used and key findings across 2019 to 2025. It
offers a concise map of conceptual, review and empirical contributions in the field. Table 9 supports the
manuscript’s claim about rising attention to AI specific rebound.

Mitigation strategies and policy responses: Mitigating AI rebound requires a multi pronged approach.
On the technical side, advances in model distillation, pruning, and energy aware training benchmarks can
reduce per task energy use37. On device inference and workload scheduling further reduce reliance on
energy intensive data centres37.

Market and economic instruments are equally important. Carbon pricing, clean energy procurement
through power purchase agreements (PPAs), and dynamic electricity tariffs can align AI growth with
decarbonization goals38.

Regulatory frameworks are emerging. Proposals include mandatory disclosure of energy and carbon
footprints for large models, AI energy labeling standards, and integration of AI into Nationally Determined
Contributions (NDCs)38.

Behavioral and demand side measures also matter. Transparency tools that show users the carbon cost
of AI queries, usage caps during high carbon grid periods, and nudges toward low impact applications
can help manage demand39.
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Table 10 presents a set of policy and technical instruments, their immediate effects, potential rebound
risks, and implementation challenges. It functions as an actionable menu for policymakers and industry.
The matrix links instruments to practical tradeoffs discussed in the conclusions.

RECOMMENDATIONS FOR FUTURE RESEARCH
To make progress on AI driven rebound effects, researchers need a clear, coordinated agenda that
improves how studies are designed and reported. First, develop and adopt harmonized reporting
frameworks that record model training and inference compute, energy consumption, storage
requirements, and any measurable shifts in throughput. Standardized extraction fields will make cross
study comparisons feasible and enable robust Meta analyses of service level rebound across industries40.
Equally important is coupling lifecycle assessment with behavioral and institutional elasticity modelling
so that technical efficiency gains can be linked to the real world responses that may amplify or mitigate
resource demand. Together, these approaches will strengthen causal explanations for observed rebound
patterns and improve the realism of future scenarios41.

A second priority is high quality empirical work in sectors where computational and operational footprints
are large; examples include large scale imaging platforms, data intensive industrial automation, and cloud
AI services, because rebound effects are most likely to be pronounced there42. Quasi experimental designs
(before and after evaluations), natural experiments, and controlled institutional studies will deliver the
effect size estimates needed to populate and validate system models43. Complementing quantitative
designs with mixed methods research on decision processes, procurement dynamics, and adoption
behaviors will reveal how organizations and users change practices when AI reduces cost, time, or labor44.
Finally, converting evidence into action requires clearer guidance for reporting environmental footprints,
incorporating energy aware procurement rules, and designing incentives that favor resource efficient AI
deployments.

Biomedical AI should be treated as a focused comparative domain within this agenda. Although it is not
the manuscript’s primary focus, biomedical applications combine heavy computational workloads with
material laboratory workflows; future studies should measure both digital and physical resource flows to
determine whether efficiency gains translate into higher testing volumes, more clinical procedures, or
greater lab throughput. Because biomedical settings are high stakes and tightly governed, they also offer
an ideal context to observe how efficiency driven behavioral changes unfold in practice, supporting
targeted, domain specific rebound evaluations. Repeated, carefully designed studies across domains will
ultimately reveal which sectors achieve net resource savings and which are prone to rebound dynamics45.

CONCLUSION
The review finds that AI efficiency gains often reduce per unit energy but frequently produce net increases
in total consumption through service level, behavioral, and economy-wide rebound pathways. Training
large models remains markedly energy-intensive, while inference scales into a persistent and growing
demand across multiple sectors. Empirical and modelling evidence consistently show rebound magnitudes
that erode a sizable share of expected savings, though estimates vary with methods and system
boundaries. Shifts in behavior, such as longer media use and reallocation of freed time to carbon intensive
activities, amplify rebound risks and warrant focused policy responses. Mitigation is achievable through
technical improvements, market instruments, regulatory disclosure, and demand side measures, each with
its own tradeoffs and implementation barriers. Policy makers should mandate transparent energy and
carbon reporting for major AI systems and embed rebound aware metrics into governance frameworks.
Industry must prioritize energy aware model design, accountable clean power procurement, and user
facing transparency tools that encourage lower impact choices. In closing, aligning AI with climate
objectives requires coordinated action across disciplines and sectors; with rigorous measurement,
deliberate policy, and conscientious design we can realize AI’s benefits while containing its environmental
footprint.
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SIGNIFICANCE STATEMENT
This review shows that although AI improves per task efficiency, these gains are often offset by service
level, behavioral, and economy wide rebound effects that increase overall energy use and emissions, as
detailed in the uploaded manuscript. Evidence synthesized from studies published between 2010 and
2025 indicates that large scale model training and expanded inference are highly energy intensive, with
rebound effects commonly estimated at 30 to 60 percent, suggesting that efficiency improvements alone
are unlikely to deliver net environmental benefits. Steering AI toward climate compatible pathways
therefore requires mandatory carbon and energy disclosure, rebound aware performance metrics,
targeted policy and market instruments, and interdisciplinary longitudinal research to quantify indirect
impacts and validate real world mitigation strategies.

ACKNOWLEDGMENT
The insightful contributions of coauthors, collaborators, and institutional partners are gratefully
acknowledged, as their expertise played a critical role in shaping this manuscript. Appreciation is also
extended to the peer reviewers and editors for their constructive feedback, which enhanced the clarity and
rigor of the work. In addition, gratitude is expressed for the technical support, data access, and personal
encouragement provided by colleagues, family, and friends.

REFERENCES
1. Vinuesa,   R.,   H.   Azizpour,   I.   Leite,   M.   Balaam   and   V.   Dignum   et   al.,   2020.   The   role 

of  artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun., Vol. 11.
10.1038/s41467-019-14108-y.

2. Schwartz, R., J. Dodge, N.A. Smith and O. Etzioni, 2020. Green AI. Commun. ACM, 63: 54-63.
3. Verdecchia, R., J. Sallou and L. Cruz, 2023. A systematic review of Green AI. WIREs Data Min. Knowl.

Discovery, Vol. 13. 10.1002/widm.1507.
4. Jeanquartier, F., C. Jean-Quartier, P. Rieder, V. Misirlić and C. Pasero et al., 2025. Assessing the carbon

footprint of language models: Towards sustainability in AI. Resour. Conserv. Recycl., Vol. 226.
10.1016/j.resconrec.2025.108670.

5. Kaack, L.H., P.L. Donti, E. Strubell, G. Kamiya, F. Creutzig and D. Rolnick, 2022. Aligning artificial
intelligence with climate change mitigation. Nat. Clim. Change, 12: 518-527.

6. Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais and Prabhat, 2019. Deep
learning and process understanding for data-driven earth system science. Nature, 566: 195-204.

7. Gohr, C., G. Rodríguez, S. Belomestnykh, D. Berg-Moelleken and N. Chauhan et al., 2025. Artificial
intelligence in sustainable development research. Nat. Sustainability, 8: 970-978.

8. Henderson, P., J. Hu, J. Romoff, E. Brunskill, D. Jurafsky and J. Pineau, 2020. Towards the systematic
reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res., Vol. 21.

9. Lannelongue, L., J. Grealey and M. Inouye, 2021. Green algorithms: Quantifying the carbon footprint
of computation. Adv. Sci., Vol. 8. 10.1002/advs.202100707.

10. Patterson, D., J. Gonzalez, Q. Le, C. Liang and L.M. Munguia et al., 2021. Carbon emissions and large
neural network training. arXiv, 10.48550/arXiv.2104.10350.

11. Wu, C.J., R. Raghavendra, U. Gupta, B. Acun and N. Ardalani et al., 2022. Sustainable AI: Environmental
implications, challenges and opportunities. arXiv, 10.48550/arXiv.2111.00364.

12. Chen, S., 2025. Data centres will use twice as much energy by 2030 - driven by AI. Nature,
10.1038/d41586-025-01113-z.

13. Kirkpatrick, K., 2023. The carbon footprint of artificial intelligence. Commun. ACM, 66: 17-19.
14. Bogmans, C., P. Gomez-Gonzalez, G. Ganpurev, G. Melina, A. Pescatori and S.D. Thube, 2025. Power

Hungry: How AI Will Drive Energy Demand. International Monetary Fund, Washington, D.C., United
States, ISBN: 9798229007207, Pages: 32.

15. Yu, Y., J. Wang, Y. Liu, P. Yu, D. Wang, P. Zheng and M. Zhang, 2024. Revisit the environmental impact
of artificial intelligence: The overlooked carbon emission source? Front. Environ. Sci. Eng., Vol. 18.
10.1007/s11783-024-1918-y.

https://doi.org/10.17311/sciintl.2026.16.28  |               Page 26



Sci. Int., 14 (1): 16-28, 2026

16. Gillingham, K., D. Rapson and  G.  Wagner,  2016.  The  rebound  effect  and  energy  efficiency  policy.
Rev. Environ. Econ. Policy, 10: 68-88.

17. Alcott, B., 2010. Impact caps: Why population, affluence and technology strategies should be
abandoned. J. Clean. Prod., 18: 552-560.

18. Zhao, J., X. Xi, Q. Na, S. Wang, S.N. Kadry and P.M. Kumar, 2021. The technological innovation of
hybrid and plug-in electric vehicles for environment carbon pollution control. Environ. Impact Assess.
Rev., Vol. 86. 10.1016/j.eiar.2020.106506.

19. Mhlanga, D., 2025. AI beyond efficiency, navigating the rebound effect in AI-driven sustainable
development. Front. Energy Res., Vol. 13. 10.3389/fenrg.2025.1460586.

20. Ertel, W. and C. Bonenberger, 2025. Rebound effects caused by artificial intelligence and automation
in private life and industry. Sustainability, Vol. 17. 10.3390/su17051988.

21. Santos, L.F., C.B.B. Costa, J.A. Caballero and M.A.S.S. Ravagnani, 2022. Framework for embedding
black-box simulation into mathematical programming via kriging surrogate model applied to natural
gas liquefaction process optimization. Appl. Energy, Vol. 310. 10.1016/j.apenergy.2022.118537.

22. Ogundiran, J., E. Asadi and M.G. da Silva, 2024. A systematic review on the use of AI for energy
efficiency and indoor environmental quality in buildings. Sustainability, Vol. 16. 10.3390/su16093627.

23. Vermesan, O., R. John, P. Pype, G. Daalderop and K. Kriegel et al., 2021. Automotive intelligence
embedded in electric connected autonomous and shared vehicles technology for sustainable green
mobility. Front. Future Transp., Vol. 2. 10.3389/ffutr.2021.688482.

24. Chen, W., Y. Men, N. Fuster, C. Osorio and A.A. Juan, 2024. Artificial intelligence in logistics
optimization with sustainable criteria: A review. Sustainability, Vol. 16. 10.3390/su16219145.

25. Lange, S., F. Kern, J. Peuckert and T. Santarius, 2021. The Jevons paradox unravelled: A multi-level
typology of rebound effects and mechanisms. Energy Res. Social Sci., Vol. 74.
10.1016/j.erss.2021.101982.

26. Aghili, S.A., A.H.M. Rezaei, M. Tafazzoli, M. Khanzadi and M. Rahbar, 2025. Artificial intelligence
approaches to energy management in HVAC systems: A systematic review. Buildings, Vol. 15.
10.3390/buildings15071008.

27. Gunasinghalge, L.U.G.E., A. Alazab and M.A. Talukder, 2025. Artificial intelligence for energy
optimization in smart buildings: A systematic review and meta-analysis. Energy Inf., Vol. 8.
10.1186/s42162-025-00592-8.

28. Makov, T. and D.F. Vivanco, 2018. Does the circular economy grow the pie? The case of rebound
effects from smartphone reuse. Front. Energy Res., Vol. 6. 10.3389/fenrg.2018.00039.

29. Munyehirwe, A., J. Ankel-Peters, M. Sievert, E. Bulte and N. Fiala, 2025. Energy efficiency and local
macro rebound effects: Theory and experimental evidence from Rwanda. World Bank Econ. Rev.,
10.1093/wber/lhaf014.

30. Pimenow, S., O. Pimenowa, P. Prus and A. Niklas, 2025. The impact of artificial intelligence on the
sustainability of regional ecosystems: Current challenges and future prospects. Sustainability, Vol. 17.
10.3390/su17114795.

31. Ejiyi, C.J., D. Cai, D. Thomas, S. Obiora and E. Osei-Mensah et al., 2025. Comprehensive review of
artificial intelligence applications in renewable energy systems: Current implementations and
emerging trends. J. Big Data, Vol. 12. 10.1186/s40537-025-01178-7.

32. Son, Y., U. Gupta, A. McCrabb, Y.G. Kim, V. Bertacco, D. Brooks and C.J. Wu, 2025. GreenScale: Carbon
optimization for edge computing. IEEE Internet Things J., 12: 32379-32393.

33. Tripathi, S., N. Bachmann, M. Brunner, Z. Rizk and H. Jodlbauer, 2024. Assessing the current landscape
of AI and sustainability literature: Identifying key trends, addressing gaps and challenges. J. Big Data,
Vol. 11. 10.1186/s40537-024-00912-x.

34. Ayadi,  R.,  Y.  Forouheshfar  and  O.  Moghadas,  2025.  Enhancing  system  resilience  to  climate
change through artificial intelligence: A systematic literature review. Front. Clim., Vol. 7.
10.3389/fclim.2025.1585331.

https://doi.org/10.17311/sciintl.2026.16.28  |               Page 27



Sci. Int., 14 (1): 16-28, 2026

35. Wu, J., 2025. Digital Jevons paradox in urban data center energy systems. Nat. Cities, 2: 677-677.
36. O’Connor, R., M. Bolton, A.K. Saeri, T. Chan and R. Pearson, 2024. Artificial intelligence and complex

sustainability policy problems: Translating promise into practice. Policy Des. Pract., 7: 308-323.
37. Paula, E., J. Soni, H. Upadhyay and L. Lagos, 2025. Comparative analysis of model compression

techniques for achieving carbon efficient AI. Sci. Rep., Vol. 15. 10.1038/s41598-025-07821-w.
38. Corrado, C., J. Haskel and C. Jona-Lasinio, 2021. Artificial intelligence and productivity: An intangible

assets approach. Oxford Rev. Econ. Policy, 37: 435-458.
39. Onweh, C.C., A. Al-Habaibeh and E. Manu, 2025. A review of energy efficiency strategies in smart

buildings: Integrating occupant comfort, HVAC optimisation, and building automation. Res. Rev.
Sustainability, 1: 48-60.

40. Algren, M., W. Fisher and A.E. Landis, 2021. Machine Learning in Life Cycle Assessment. In: Data
Science Applied to Sustainability Analysis, Dunn, J. and P. Balaprakash (Eds.), Elsevier, Amsterdam,
Netherlands, ISBN: 978-0-12-817976-5, pp: 167-190.

41. Masanet, E.,  A.  Shehabi,  N.  Lei,  S.  Smith  and  J.  Koomey,  2020.  Recalibrating  global  data  center
energy-use estimates. Science, 367: 984-986.

42. Azevedo, I.M.L., 2014. Consumer end-use energy efficiency and rebound effects. Annu. Rev. Environ.
Resour., 39: 393-418.

43. Lacoste, A., A. Luccioni, V. Schmidt and T. Dandres, 2019. Quantifying the carbon emissions of machine
learning. arXiv, 10.48550/arXiv.1910.09700.

44. Anih, D.C., K.A. Arowora, M.A. Abah, K.C. Ugwuoke and B. Habibu, 2025. Redefining biomolecular
frontiers: The impact of artificial intelligence in biochemistry and medicine. J. Med. Sci., 25: 1-10.

45. Arowora, A.K., I. Chinedu, D.C. Anih, A.A. Moses and K.C. Ugwuoke, 2022. Application of artificial
intelligence in biochemistry and biomedical sciences: A review. Asian Res. J. Curr. Sci., 4: 302-312.

https://doi.org/10.17311/sciintl.2026.16.28  |               Page 28


