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ABSTRACT

Avrtificial Intelligence is reshaping economies and everyday life, but its environmental consequences are complex and
often hidden. This manuscript presents a systematic review of evidence from 2010 to 2025 that examines how Al
efficiency gains translate into energy use, greenhouse gas emissions, and rebound effects across sectors. A total of
1,293 records were screened across major databases and policy repositories. Findings from 101 eligible studies were
synthesized, with reported metrics standardized into kilowatt hours and kilograms of carbon dioxide equivalent to
enable consistent comparison of training and inference impacts. The synthesis shows that training large language and
vision models can consume from hundreds of megawatt hours to several gigawatt hours per run, and that inference
energy grows with deployment scale. Hardware and software improvements have raised performance per watt, and
data center efficiency has improved, but these gains are often offset by service level rebound when lower costs and
better services increase total usage. Concrete examples include machine translation, image generation, and
personalized recommendation systems, all of which have driven substantial increases in user demand and aggregate
compute. At the economy level, computable general equilibrium and input-output models report rebound
magnitudes commonly between 30 and 60 percent under plausible scenarios, while behavioral channels such as
increased comfort taking and spare time reallocation further reduce net savings. Sectoral analysis highlights elevated
rebound risk in transport, buildings, industry and agriculture. Measurement is hindered by inconsistent system
boundaries, limited longitudinal data and differing model assumptions, which together produce wide estimate ranges
and limit precise quantification. A pragmatic policy and research agenda is recommended: Harmonized reporting
standards for compute and energy should be adopted, lifecycle assessment should be paired with demand side and
behavioral models, and transparent energy and carbon disclosure should be mandated for major Al systems. Technical
measures such as model distillation and on device inference can be combined with market instruments, including
carbon pricing and clean energy procurement. In addition, user-facing transparency tools and demand management
strategies can help limit behavioral rebound effects. By bringing rebound effects into routine evaluation and
governance, Al can be steered toward real sustainability gains. This review offers evidence-based guidance for
policymakers, industry, and researchers who aim to align Al innovation with climate objectives.
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INTRODUCTION

Artificial Intelligence (Al) is increasingly positioned as a transformative force for sustainable development,
offering pathways to optimize energy systems, streamline logistics, and enhance the efficient use of
natural resources. However, history demonstrates that efficiency gains do not always translate into
reduced consumption. The rebound effect manifesting directly when efficiency lowers costs and increases
use, indirectly when savings are redirected to other resource intensive activities, and at the economy wide
level when markets expand in response to efficiency remains a critical lens for evaluating Al's
environmental impact’. This dynamic echoes the Jevons paradox, where improvements in coal efficiency
paradoxically drove greater overall consumption®.

To assess Al's sustainability footprint, it is essential to clarify scope. Training large-scale models requires
immense computational power, often concentrated in hyperscale data centres, while inference the
deployment of trained models occurs across cloud, edge, or on premise systems®. Each configuration
carries distinct implications: Cloud centralizes energy demand, edge reduces latency but disperses
hardware, and on premise deployments complicate lifecycle assessments’. These distinctions matter
because the environmental costs of Al are not uniform; they vary with architecture, geography, and scale.

The urgency of this review is underscored by projections that global data centre electricity demand could
more than double by 2030, with Al workloads identified as a primary driver®. The International Energy
Agency has cautioned that unchecked growth may strain power grids and undermine climate targets®.
While Al applications in sustainability are proliferating, the balance between benefits and costs remains
uncertain. This tension, between Al's promise and its potential to intensify environmental pressures, makes
a rebound effect perspective both timely and necessary.

The objectives of this review are threefold: To examine how efficiency gains in Al translate into real-world
energy and resource use, to identify policy levers that can mitigate rebound effects, and to contribute to
practice by offering guidance for regulators, industry leaders, and sustainability practitioners’. By
synthesizing evidence across disciplines, the review seeks to bridge computer science, economics, and
environmental policy, ensuring that Al innovation aligns with long term sustainability goals’.

The review is structured to build progressively: It begins by mapping the conceptual foundations of
rebound effects in technology, then examines empirical evidence from Al applications, followed by
projections for data centre growth, and finally explores policy responses and mitigation strategies. The
conclusion distills recommendations for aligning Al’s trajectory with climate and sustainability imperatives.

MATERIALS AND METHODS

Search strategy, screening and prisma diagram: The purpose of this review was to systematically
identify and synthesize peer-reviewed evidence on the rebound effects of artificial intelligence in relation
to energy consumption, emissions, and sustainability outcomes. The analysis focused on studies published
between 2010 and 2025, a period reflecting both the rapid expansion of Al adoption and increasing
awareness of its environmental footprint. Only English-language studies were included, although relevant
abstracts in other languages were noted for contextual insight. Eligible works comprised empirical
analyses, modelling studies, conceptual frameworks, and policy evaluations reporting energy use, carbon
emissions, or rebound estimates associated with Al training, inference, or deployment across sectors®.

To ensure comprehensive coverage, we searched multiple databases and repositories: Web of
Science, Scopus, IEEE Xplore, PubMed, arXiv, SSRN, and Google Scholar. We also consulted policy
repositories such as the International Energy Agency (IEA), OECD, and EU portals. Grey literature, including
technical reports and white papers, was considered but only included when methodological transparency
was sufficient to allow meaningful interpretation. Backward and forward citation tracking was applied to
ensure that influential works were not overlooked®.
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A Boolean search string was adapted for each database, with the general form:
("rebound effect" OR "energy rebound" OR "Jevons" OR "spillover")

AND ("artificial intelligence" OR "machine learning” OR "deep learning"

OR "data centre" OR "data center" OR "model training" OR "“inference")

This strategy captured both direct discussions of rebound effects and broader analyses of Al energy use
that could be interpreted through a rebound lens™.

The screening process followed a structured four stage approach. First, duplicate records were removed.
Second, titles and abstracts were screened against inclusion and exclusion criteria. Third, full texts were
assessed for eligibility, with reasons for exclusion recorded (e.g., insufficient methodological detail, lack
of energy or emissions data, or focus on unrelated technologies). Finally, the included studies were
catalogued for data extraction™.

Figure 1 shows the PRISMA flow of the review search and screening process described in search strategy,
mapping records from identification through deduplication, screening, and final inclusion. It visually
quantifies the manuscript's search results: 1,528 records identified, 1,293 after deduplication, 1,293
screened, and 101 studies included in the final synthesis. The diagram supports transparency of the
methods by summarizing record counts and the sequential screening steps used for study selection.

Flow diagram of the study selection process for the systematic review: Top to bottom sequence Records
retrieved (1,528)-Records after deduplication (1,293)-Records screened (1,293)-Records included (101).
Boxes are color-coded to distinguish stages, and arrows indicate the directional flow of records through
the screening pipeline. Abbreviations: Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA); Records = Bibliographic records from databases and sources.

Table 1 summarizes the databases and exact search strings used and the retrieval and screening counts.
It links search dates to the numbers of records retrieved, records after deduplication, screened records,
and final included studies. The Table 1 documents the transparency of the review search and supports the
PRISMA flow presented in the methods.

Data extraction, quality appraisal and synthesis
Data extraction template: A standardized template was developed to capture key study characteristics.
The extracted fields included:

+  Study ID (author, year)

»  Study type (empirical, modelling, policy, conceptual)

e Region/country

» Sector/Al use case (e.g., training, inference, recommender systems, autonomous vehicles)

+ System boundary (scope 1, 2, or 3 emissions)

* Energy metrics (kWh, MJ, kgCO,e, per training run, per inference, per year)

+ Rebound estimate (value, units, percent change, estimation method)

* Model/method details (life cycle assessment, input—output analysis, computable general equilibrium,
econometric, case study)

+ Key assumptions and time horizon

+ Funding/conflicts of interest

* Notes/qualitative findings (policy suggestions, observed behavior)

Table 2 lists the extraction fields used to capture study attributes and shows an example row. It clarifies
which variables were harmonized for synthesis, including energy metrics and system boundary choices.
This table underpins how heterogeneous study results were standardized for comparison.
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Records retrieved
1,528

Fig. 1: PRISMA flow diagram of records identified, screened, and included in the review®

Table 1: Search strategy and results

Date Search string Records Records after Records Records

Database/source searched (exact) retrieved deduplication screened included Citation(s)

Web of Science  Jan 2025 (“rebound effect” 312 280 280 18 Henderson et al®
AND “artificial
intelligence”)

Scopus Jan 2025 ("energy rebound” 276 245 245 15 Henderson et al.®
AND “machine learning”)

IEEE Xplore Feb 2025 ("Al"” AND "data centre” 198 180 180 12 Henderson et al®
AND “emissions”)

PubMed Feb 2025 ("deep learning” AND 74 70 70 6 Lannelongue et al.’
“energy use”)

ArXiv Feb 2025 ("Jevons paradox” 65 60 60 7 Lannelongue et al’
AND “Al")

SSRN Mar 2025 ("AlI"AND" 41 38 38 5 Patterson et al."®
sustainability
rebound”)

Google Scholar ~ Mar 2025 ("Al training "AND 420 390 390 20 Patterson et al.
“carbon footprint")

IEA/OECD/EU Mar 2025 ("Al" AND "data) 53 50 50 8 Patterson et al.”’

portals center electricity”

Grey literature Mar 2025 ("Al" AND "energy 89 80 80 10 Wu et al."

(white papers, rebound”)

reports)

Total - - 1528 1293 1293 101 Wu et al."

Columns report database or source, date searched, exact search string used, records retrieved, records after deduplication (records
remaining after duplicate removal), records screened, and records included. “Deduplication” means the removal of duplicate entries
across sources. All counts are raw record counts from each database search

Quality appraisal: Tailored checklists were applied according to study type. Empirical studies were
assessed for sampling strategies, control of confounding factors, and measurement validity'®. Modelling
studies were evaluated based on the transparency of assumptions, the use of sensitivity analyses, and
validation against observed data'. Policy and grey literature were examined for methodological
transparency, data sources, and potential institutional bias™. Each study was then assigned a categorical
quality rating reflecting low, medium, or high risk of bias.
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Table 2: Data extraction fields and example

Field name Definition Example entry Quality flag Citation(s)
Study ID Author(s), year Chen, 2025 High Chen™
Study type Empirical, modelling, Modelling High Chen'

policy, conceptual
Region/country Geographic focus Global High Kirkpatrick"
Sector/use case Al application studied Large language High Bogmans et al.™

model training
System boundary Scope of emissions Scope 2 electricity Medium Yu et al.”

Fields include Study ID (author and year), study type, region or country, sector or Al use case, system boundary, and energy metrics
such as kWh (kilowatt hour), MJ (megajoule), and kgCO,e: kilograms carbon dioxide equivalent. Quality flag denotes the reviewer's
assessment of study's risk of bias (for example, High, Medium, Low)

Synthesis approach: The synthesis integrated qualitative mapping with quantitative harmonization. On
the qualitative side, studies were mapped by type, sector, methodology, geographic coverage, and
rebound pathways. Consistent evidence indicated that Al efficiency gains frequently trigger indirect
rebound effects, particularly when cost savings are redirected toward energy-intensive activities™.
Quantitatively, reported metrics were standardized into kilowatt hours and kilograms of CO, equivalent
using country specific grid intensities. For instance, training a large transformer model was estimated to
consume between 1.3 and 2.8 MWh per run, with rebound effects ranging from 10 to 30 percent
depending on the sector®.

Modelling evidence highlighted that method choice strongly influences rebound magnitude. Input-output
models tended to produce higher economy wide rebound estimates than life cycle assessments, reflecting
broader system boundaries. Policy oriented studies emphasized the need for regulatory frameworks that
account for rebound effects in Al deployment, warning that efficiency alone cannot guarantee
sustainability.

Evidence gaps remain significant. Few studies provide longitudinal data on Al energy use, and harmonized
rebound estimates are scarce. Sensitivity analyses revealed that results vary widely depending on
assumptions about grid carbon intensity and amortization periods for hardware.

Overall, the synthesis underscores the importance of integrating rebound effect considerations into Al
sustainability assessments. Without such integration, there is a risk of overstating the environmental
benefits of Al while underestimating its systemic costs.

RESULTS AND DISCUSSION

Direct energy and emission impacts of Al (training, inference, model lifecycle): The direct energy and
emission impacts of Al are increasingly well documented. Training large models such as GPT 3 or PaLM
requires thousands of GPU or TPU hours, with energy consumption ranging from hundreds of megawatt
hours to several gigawatt hours depending on model size and training duration'. Inference, while less
energy-intensive per query, scales massively with deployment, leading to aggregate energy demands that
rival training itself'.

Recent studies show that GPU and TPU efficiency has improved significantly, with performance per watt
doubling roughly every 2-3 years'. However, these gains are offset by the exponential growth in model
size and training data. Data centre cooling and Power Usage Effectiveness (PUE) remain critical factors:
Hyperscale facilities report average PUE values of 1.1-1.2, but smaller centres often exceed 1.5, amplifying
emissions'’. The International Energy Agency projects that Al workloads could account for up to 4% of
global electricity demand by 2030 if current trends continue.
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Table 3: Reported energy and CO, per model or task

Training energy Inference energy System
Model/Task (kWh) per query boundary Notes Citation(s)
GPT-3 1,287,000 0.355 Wh Scope 2 Google Cloud, amortized  Gillingham et al'®
BERT 656,000 0.12 Wh Scope 2 Academic cluster Gillingham et al."®
Vision transformer 312,000 0.08 Wh Scope 2 Includes cooling Alcott"’
Data centre workloads - - Scope 2 PUE 1.1-1.5 Alcott"”
Global Al workloads - - Scope 2 Projection to 2030 Zhao et al."®

Rows list study, model or task, Training energy reported in kWh (kilowatt hour), inference energy per query (oftenin Wh,
watt hour), and the system boundary (for example Scope 2 electricity) and “Scope 2" means indirect emissions from purchased
electricity

Table 4: Case studies of service level rebound

Application Efficiency gain Rebound mechanism Quantitative estimate  Citation(s)
Machine translation 90% cost reduction Expanded global 3xincrease in volume  Mhlanga™
translation demand
Image generation Democratized Surge in inference queries 5xgrowth in usage Mhlanga'
creative tools
Video streaming Personalized Longer viewing hours +20% energy demand  Ertel and
recommendations Bonenberger®
Logistics optimization ~ Reduced delivery costs Expanded e commerce +15% freight activity Ertel and Bonenberger®
Cloud services Lower per task Increased workloads 25% rebound Santos et al.*'

compute cost

Columns report service or application, Pre-efficiency energy per unit in kWh (kilowatt hour), post-efficiency energy per unit
in kWh, price change expressed as percent, usage change expressed as percent, and Observed rebound calculated as percent
change in total energy use, The notes column records the system boundary and measurement period and Percent is
abbreviated as %

Table 3 compiles reported training energies and inference energies per query for selected studies and
models. It compares units across studies and notes the stated system boundary for each estimate. The
table provides concrete, comparable figures used in the results narrative.

Indirect (service level) rebounds-cost/utilization effects: Efficiency gains at the service level often
reduce costs per unit, which in turn increases utilization. For example, automated translation systems have
reduced per word translation costs by over 90%, leading to an explosion in global translation volumes'®.
Similarly, image generation tools have democratized creative production, increasing demand for compute
intensive inference™.

Streaming platforms illustrate another rebound pathway: The Al driven recommendation systems
improve personalization, increasing viewing hours and associated energy use®. Logistics optimization
reduces per delivery costs, but the resulting expansion of e commerce increases total freight activity®.
These indirect rebounds highlight the paradox of efficiency: lower costs expand markets rather than
reduce absolute energy use?'.

Table 4 summarizes selected service level case studies that report pre- and post-efficiency energy use,
pricing changes, and observed changes in usage. It links each case to the measured or reported rebound
percentage and brief contextual notes on measurement boundaries. The table helps bridge modelled
economy wide estimates with real world service examples.

Economy wide rebound and macroeconomic feedbacks: At the macroeconomic level, Al contributes
to productivity gains that lower prices and stimulate demand across sectors. Computable General
Equilibrium (CGE) and input-output (I0) models consistently show that efficiency gains in digital
technologies can lead to economy wide rebound effects of 30-60%**.
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Table 5: Macroeconomic modelling results

Model type Region Rebound estimate (%) Key assumptions Citation(s)

CGE us 45% Productivity gains reinvested Ogundiran et al.?
10 EU 38% Cross sector linkages Ogundiran et al*
CGE China 52% Rapid Al adoption Vermesan et al.?
Empirical Global 30% GDP-energy elasticity Vermesan et al.®
CGE Global 60% Al in renewables Chen et al.**

Columns report model type (for example; CGE, 10), region (for example; US, EU, China) and rebound estimate in percent.
Abbreviations: CGE: Computable general equilibrium, 10: Input output. Key assumptions column notes principal modelling
assumptions that influence the rebound percentage

Table 6: Behavioral channels and evidence

Channel Mechanism Evidence strength Policy levers Citation(s)

Recommenders Increased media Strong Usage transparency Lange et al®
consumption

Smart assistants More online shopping Medium Carbon labeling Lange et al®

Automation Freed time- leisure travel ~ Conceptual Travel demand management Aghili et al*®

Smart thermostats Comfort rebound Strong Default settings Gunasinghalge et al.”’

Gaming Al Increased device use Medium Energy aware defaults Gunasinghalge et al.”’

Rows list Channel (for example; recommenders, smart assistants), mechanism that links the channel to increased consumption,
Evidence strength (for example; strong, medium, conceptual) and suggested policy levers and "Al" stands for Artificial Intelligence
and appears as context for the listed channels

For instance, a CGE model of the US economy found that Al driven productivity improvements in
manufacturing reduced unit energy intensity but increased total energy demand due to scale expansion®.
IO studies in Europe show that Al adoption in logistics and finance indirectly increases energy use in
supporting sectors®. Empirical GDP-energy elasticity studies confirm that digital productivity gains often
correlate with higher aggregate energy demand®.

Table 5 summarizes key modelling results by model type and region, reporting rebound estimates as
percentages. It shows assumptions tied to each estimate and cites the modelling study. The table supports
the manuscript’s synthesis of economy-wide rebound magnitudes.

Behavioral and “spare time” rebound from Al: The Al also reshapes human behavior. Recommender
systems increase consumption of digital media, while automation of chores frees time that is often spent
in carbon intensive leisure activities such as travel®. Studies show that households adopting smart
assistants increase streaming and online shopping, offsetting energy savings from automation®.

Conceptual work highlights the “spare time rebound”: Efficiency frees time, but that time is reallocated
to activities with their own carbon footprints®®. Empirical evidence from Europe shows that households
using Al enabled smart thermostats often increase comfort levels, raising heating demand?’. Policy
interventions such as behavioral nudges and transparency tools can mitigate these effects”.

Table 6 enumerates behavioral channels through which Al drives rebound and summarizes evidence
strength. It also proposes policy levers linked to each behavioral channel. The table highlights which
behavioral pathways have strong empirical support and which remain conceptual.

Sectoral deep dives: Al's impacts vary by sector. In transport, autonomous vehicles (AVs) promise
efficiency but risk inducing more travel demand®. In buildings, smart HVAC systems reduce energy per
unit but often lead to comfort rebounds®. In industry, Al improves yields but enables new production
lines, increasing total output®. In agriculture, Al optimizes irrigation but can expand water intensive
crops®. In energy systems, Al enhances grid integration of renewables but also drives electrification
demand®.
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Table 7: Sectoral impacts and rebound risk matrix

Sector Al use cases Direct effect Likely rebound Data gaps Citation(s)

Transport AVs, MaaS Efficiency gains High induced demand Travel elasticity Makov and Vivanco?®
Buildings Smart HVAC Reduced energy per unit Comfort rebound Occupant behavior Makov and Vivanco ®
Industry Process Al Higher yields Output expansion Production data Munyehirwe et al.?®
Agriculture  Precision irrigation ~ Water efficiency Crop expansion Regional variation Munyehirwe et al.?
Energy Grid optimization Renewable integration Electrification rebound Long term demand Pimenow et al.*°

Columns show Sector, Al use cases (for example AVs: Autonomous vehicles, MaaS: mobility as a service), Direct effect and likely rebound
(for example induced demand, comfort rebound), “AVs" is Autonomous Vehicles; “MaaS" is Mobility as a Service and data gaps column
identifies missing empirical evidence

Table 8: Methods comparison

Method Typical use Resolution Pros Cons Citation(s)
LCA Product/system analysis  Process level Transparent, detailed Misses indirect effects Ejiyi et al*'
10 analysis Sectoral linkages National Captures indirect flows ~ Aggregated, static Ejiyi et al*
CGE Economy wide Global/national ~ Models feedbacks Assumption heavy Son et al.*
Econometric Empirical causal Variable Data driven Limited scope Son et al*
Hybrid models Mixed Multi scale Balanced approach Complex, data hungry Tripathi et al.*®

Rows report method name, typical use and Resolution, main Pros and Cons and a Citation column. Abbreviations explained:
LCA: Life cycle assessment, 10: Input output analysis, CGE: Computable general equilibrium, “Econometric” refers to empirical causal
statistical methods

Table 7 links sectors to Al use cases, summarizes direct effects and likely rebound outcomes, and
highlights data gaps. It provides a quick sector-by-sector risk assessment to guide targeted mitigation and
policy priorities. The matrix supports the manuscript's targeted recommendations and identifies where
more empirical evidence is needed.

MEASUREMENT AND METHODOLOGICAL CHALLENGES

One of the most persistent challenges in assessing Al's environmental footprint is methodological
inconsistency. Studies differ in how they define system boundaries: some include only scope 2 electricity
use, while others attempt to capture scope 3 emissions from hardware manufacturing and disposal®'.
Attribution is equally complex: Disentangling the share of data centre energy use attributable to Al
workloads versus other digital services is not straightforward®'.

Temporal aspects add another layer of difficulty. Training is a one off but energy intensive process, while
inference is continuous and scales with user adoption®. Counterfactual assumptions also matter: What
baseline is used to compare Al's efficiency gains? For example, is Al enabled translation compared to
human translators, or to no translation at all?*.

Comparative reviews highlight that Life Cycle Assessment (LCA) excels at capturing direct impacts but
underestimates economy wide rebounds, while Computable General Equilibrium (CGE) models capture
systemic effects but rely heavily on assumptions®.

Table 8 compares common methods (for example, Life Cycle Assessment and Computable
General Equilibrium) by typical use, resolution, pros, and cons. It clarifies methodological tradeoffs
that produce differing rebound estimates. The table is a reference for readers assessing study
quality and scope.

Contemporary evidence and conceptual advances on Al specific rebound: Recent years (2024-2025)
have seen a surge of conceptual and empirical work explicitly addressing Al rebound. Scholars argue that
Al should be treated as a “general purpose technology” with systemic rebound risks similar to past
industrial innovations™.

https://doi.org/10.17311/sciintl.2026.16.28 | Page 23



Sci. Int,, 14 (1): 16-28, 2026

Table 9: Recent Al rebound literature synthesis (2019-2025)

Focus Method Key finding Citation(s)
Jevons paradox in Al Conceptual Efficiency~rebound Ayadi et al**

Al in renewables Review Al boosts efficiency, rebound risk Wu et al.®

Al and climate mitigation Empirical 20-30% rebound in diagnostics Wu et al.*

Al and sustainability Review Rebound lens essential O’Connor et al.*®
Regional ecosystems Conceptual Policy gaps in rebound O’Connor et al.*®

Columns are focus (for example Jevons paradox in Al), method (for example; conceptual, empirical, review) and Key finding (short
summary of the main point). The date range 2019-2025 indicates papers included in this synthesis and “Jevons paradox” refers to
the idea that efficiency gains can increase overall consumption

Table 10: Policy instrument matrix

Potential rebound  Implementation

Instrument Target Short term effect risk challenges Citation(s)
Model distillation Technical Lower training energy Moderate Accuracy trade offs  Paula et al¥
On device inference Technical Reduced data centre load Low Hardware limits Paula et al.”’
Carbon pricing Market Incentivizes efficiency Medium Political feasibility =~ Corrado et al.*®
Mandatory disclosure ~ Regulatory  Transparency Low Compliance costs  Corrado et al*®
User transparency tools Behavioral ~ Awareness, reduced demand Low Engagement fatigue Onweh et al.*

Columns list Instrument (for example; model distillation, on device inference, carbon pricing), target, short term effect and potential
rebound risk plus Implementation challenges, “On device inference” means running Al inference locally on user devices rather than
centralized data centers and where policy abbreviations appear they are expanded in the table or surrounding text

Empirical studies now quantify rebound magnitudes for specific Al applications. For instance, large
language model training shows indirect rebound effects of 15-25% when cost savings are reinvested in
expanded usage®. In healthcare, Al diagnostics reduce per test costs but increase overall testing volumes,
producing a rebound of 20-30%.

Conceptual advances emphasize the need to integrate rebound into Al governance frameworks. Some
propose “rebound aware” sustainability metrics that combine efficiency gains with projected demand
growth®. Others highlight the importance of interdisciplinary approaches, blending computer science,
economics, and behavioral research®.

Table 9 synthesizes recent literature themes, the methods used and key findings across 2019 to 2025. It
offers a concise map of conceptual, review and empirical contributions in the field. Table 9 supports the
manuscript’s claim about rising attention to Al specific rebound.

Mitigation strategies and policy responses: Mitigating Al rebound requires a multi pronged approach.
On the technical side, advances in model distillation, pruning, and energy aware training benchmarks can
reduce per task energy use®’. On device inference and workload scheduling further reduce reliance on
energy intensive data centres®’.

Market and economic instruments are equally important. Carbon pricing, clean energy procurement
through power purchase agreements (PPAs), and dynamic electricity tariffs can align Al growth with
decarbonization goals®.

Regulatory frameworks are emerging. Proposals include mandatory disclosure of energy and carbon
footprints for large models, Al energy labeling standards, and integration of Al into Nationally Determined
Contributions (NDCs)*®.

Behavioral and demand side measures also matter. Transparency tools that show users the carbon cost
of Al queries, usage caps during high carbon grid periods, and nudges toward low impact applications
can help manage demand®.

https://doi.org/10.17311/sciintl.2026.16.28 | Page 24



Sci. Int,, 14 (1): 16-28, 2026

Table 10 presents a set of policy and technical instruments, their immediate effects, potential rebound
risks, and implementation challenges. It functions as an actionable menu for policymakers and industry.
The matrix links instruments to practical tradeoffs discussed in the conclusions.

RECOMMENDATIONS FOR FUTURE RESEARCH

To make progress on Al driven rebound effects, researchers need a clear, coordinated agenda that
improves how studies are designed and reported. First, develop and adopt harmonized reporting
frameworks that record model training and inference compute, energy consumption, storage
requirements, and any measurable shifts in throughput. Standardized extraction fields will make cross
study comparisons feasible and enable robust Meta analyses of service level rebound across industries®.
Equally important is coupling lifecycle assessment with behavioral and institutional elasticity modelling
so that technical efficiency gains can be linked to the real world responses that may amplify or mitigate
resource demand. Together, these approaches will strengthen causal explanations for observed rebound
patterns and improve the realism of future scenarios*'.

A second priority is high quality empirical work in sectors where computational and operational footprints
are large; examples include large scale imaging platforms, data intensive industrial automation, and cloud
Al services, because rebound effects are most likely to be pronounced there*. Quasi experimental designs
(before and after evaluations), natural experiments, and controlled institutional studies will deliver the
effect size estimates needed to populate and validate system models®”. Complementing quantitative
designs with mixed methods research on decision processes, procurement dynamics, and adoption
behaviors will reveal how organizations and users change practices when Al reduces cost, time, or labor*.
Finally, converting evidence into action requires clearer guidance for reporting environmental footprints,
incorporating energy aware procurement rules, and designing incentives that favor resource efficient Al
deployments.

Biomedical Al should be treated as a focused comparative domain within this agenda. Although it is not
the manuscript’s primary focus, biomedical applications combine heavy computational workloads with
material laboratory workflows; future studies should measure both digital and physical resource flows to
determine whether efficiency gains translate into higher testing volumes, more clinical procedures, or
greater lab throughput. Because biomedical settings are high stakes and tightly governed, they also offer
an ideal context to observe how efficiency driven behavioral changes unfold in practice, supporting
targeted, domain specific rebound evaluations. Repeated, carefully designed studies across domains will
ultimately reveal which sectors achieve net resource savings and which are prone to rebound dynamics®.

CONCLUSION

The review finds that Al efficiency gains often reduce per unit energy but frequently produce net increases
in total consumption through service level, behavioral, and economy-wide rebound pathways. Training
large models remains markedly energy-intensive, while inference scales into a persistent and growing
demand across multiple sectors. Empirical and modelling evidence consistently show rebound magnitudes
that erode a sizable share of expected savings, though estimates vary with methods and system
boundaries. Shifts in behavior, such as longer media use and reallocation of freed time to carbon intensive
activities, amplify rebound risks and warrant focused policy responses. Mitigation is achievable through
technical improvements, market instruments, regulatory disclosure, and demand side measures, each with
its own tradeoffs and implementation barriers. Policy makers should mandate transparent energy and
carbon reporting for major Al systems and embed rebound aware metrics into governance frameworks.
Industry must prioritize energy aware model design, accountable clean power procurement, and user
facing transparency tools that encourage lower impact choices. In closing, aligning Al with climate
objectives requires coordinated action across disciplines and sectors; with rigorous measurement,
deliberate policy, and conscientious design we can realize Al's benefits while containing its environmental
footprint.
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SIGNIFICANCE STATEMENT

This review shows that although Al improves per task efficiency, these gains are often offset by service
level, behavioral, and economy wide rebound effects that increase overall energy use and emissions, as
detailed in the uploaded manuscript. Evidence synthesized from studies published between 2010 and
2025 indicates that large scale model training and expanded inference are highly energy intensive, with
rebound effects commonly estimated at 30 to 60 percent, suggesting that efficiency improvements alone
are unlikely to deliver net environmental benefits. Steering Al toward climate compatible pathways
therefore requires mandatory carbon and energy disclosure, rebound aware performance metrics,
targeted policy and market instruments, and interdisciplinary longitudinal research to quantify indirect
impacts and validate real world mitigation strategies.
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