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ABSTRACT

Artificial Intelligence (Al) is rapidly transforming food systems by offering tools that improve productivity, safety,
personalization, and resilience across the value chain. This review synthesizes current evidence on Al applications in
agriculture, food processing, personalized nutrition, and supply chain management, and outlines governance and research
priorities to ensure that technological gains translate into improved nutrition, equity, and sustainability. This study examined
peer-reviewed literature and recent reports to map Al methods, use cases, benefits, and limitations. In agriculture, Al has
enhanced precision farming, phenotyping and breeding, and post-harvest handling through sensor-based monitoring,
predictive modeling, and automated decision support, leading to improved yields and produce quality. In food safety and
processing, computer vision and machine learning have advanced contamination detection, quality grading and process
optimization, reducing waste and improving consistency. In personalized nutrition, Al models integrate dietary records,
phenotypic indicators and multiomic data to generate individualized recommendations and adaptive interventions that can
improve metabolic outcomes and dietary adherence. For supply chain resilience, Al enabled forecasting, traceability and risk
assessment support rapid response to disruptions and improve logistical efficiency. Despite demonstrable gains, widespread
adoption faces challenges including variable data quality, algorithmic bias, limited transparency, infrastructure gaps, and
potential environmental tradeoffs. Equity concerns emerge when resource constrained producers and consumers lack access
to data, tools or skills. We propose a framework for responsible Al in food systems that emphasizes standards for data
governance and model validation, inclusive design and capacity building, transparent reporting and life cycle assessment
to evaluate environmental impacts. Policy levers, public private partnerships and cross disciplinary research are needed to
harmonize technological innovation with nutritional and sustainability goals. Finally, we identify priority research areas
including scalable validation studies, interoperable data platforms, methods to mitigate bias, and metrics to quantify
nutritional and environmental co benefits. By integrating Al with sound governance and evidence based evaluation, the food
sector can harness digital advances to support safe, nutritious and sustainable diets at scale. This review offers actionable
recommendations for practitioners, researchers and policymakers to guide implementation, monitoring and evaluation of
Al interventions that advance food security and public health and equity.
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INTRODUCTION

Global food systems are confronting a confluence of challenges rising demand, nutritional inequities, and
the imperative to reduce environmental impact, that require integrative technological and policy
responses to achieve sustainable, health-promoting diets by 2030". Artificial Intelligence (Al) has emerged
as a transformative enabler across the food value chain, offering scalable tools to monitor safety, enhance
productivity, and tailor nutrition strategies to individual and population needs?. In agriculture, Al-driven
approaches including precision sensing, predictive modeling, and automated decision support are
accelerating breeding, optimizing resource use, and improving the functional properties of produce,
thereby strengthening both productivity and nutritional quality’.

Within food industry operations, Al innovations are expanding from quality control and contamination
detection to process optimization and product innovation, enabling faster, more reliable manufacturing
and responsive product development pipelines’. At the intersection of manufacturing and consumer
health, Al supports personalized nutrition by integrating multi-omic data, dietary intake, and lifestyle
measures to generate individualized recommendations and adaptive interventions that can improve
metabolic outcomes and adherence to healthier diets®. Beyond the farm and factory, the resilience of food
supply chains is increasingly bolstered by Al-enabled analytics that enhance demand forecasting,
traceability, and organizational responsiveness, helping firms anticipate disruptions and maintain
continuity under dynamic conditions®.

Despite its promise, responsible deployment of Al in food and nutrition requires careful attention to data
quality, transparency, equity and environmental trade-offs so that technological gains translate into
meaningful public-health and sustainability outcomes. This manuscript synthesizes current evidence on
Al applications across agriculture, food processing, personalized nutrition and supply-chain resilience, and
it outlines a framework for integrating technological innovation with nutritional science and policy to
advance sustainable, equitable food systems. The aim is to provide practitioners, researchers, and
policymakers with a coherent assessment of where Al is delivering impact today and the priorities for
research and governance needed to ensure Al strengthens food security, safety and nutritional well-being
at scale.

Al IN NUTRIGENOMICS FOR SUSTAINABLE FOOD SYSTEMS

Al-driven genomic data analysis for personalized nutrition: The Al-driven analytic frameworks are
enabling the interpretation of large-scale genomic datasets to inform personalized dietary
recommendations. By integrating SNP profiles, clinical biomarkers, microbiome measures, and lifestyle
metadata, modern machine-learning (ML) pipelines detect complex, nonlinear associations between
genotype and nutrient metabolism, thereby enabling tailored dietary strategies for disease prevention and
health promotion”?.

In practice, supervised learning models (e.g., random forests, gradient-boosted trees) and ensemble
methods are applied to genotype phenotype cohorts to rank polymorphisms by effect size on metabolic
endpoints; deep networks and representation learning then extract latent patterns that link variant
combinations to nutrient-response phenotypes’®.

* Machine learning for SNP interpretation: The ML approaches improve on classical association
testing by capturing epistatic and non-additive effects among SNPs, enabling detection of
combinatorial genetic signatures relevant to micronutrient handling and drug nutrient interactions.
Models trained on multi-cohort datasets can prioritize SNPs that influence absorption, transport, or
enzymatic conversion of vitamins and minerals; these prioritized variants become inputs for

downstream predictive rules in clinical decision support”®
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* Predictive models for diet gene interactions: Integrative predictive models combine genotype with
meal composition and temporal glucose, lipid, or metabolite readouts to forecast individual metabolic
responses (e.g., postprandial glycemia, lipid excursion). Such models have shown predictive value for
tailoring meal plans, optimizing macronutrient distribution, and informing supplementation strategies
that account for genetic predisposition”®

Figure 1 illustrates the sequential stages of the Al-driven nutrigenomic analysis pipeline described. It
highlights how raw genomic and lifestyle data are collected, preprocessed, and analyzed through machine
learning models. The workflow demonstrates the integration of Al to generate personalized nutrition
insights from complex genotype phenotype interactions.

Al in food composition and nutrient profiling: Computer vision and deep learning have matured to the
point that automated food recognition and nutrient estimation from images are viable at scale.
Convolutional Neural Networks (CNNs), vision transformers, and hybrid ensembles can identify dishes,
segment plates, and estimate portion sizes, feeding into nutrient-estimation modules that map visual
features to macronutrient and, where available, micronutrient content®°,

Deep learning for food image recognition and nutrient estimation: Training on large, annotated
datasets underpins accurate recognition and portion estimation; transfer learning and multimodal models
(image+textual metadata) further improve robustness in real-world settings. The DL-enabled pipelines
reduce logging burden for users and clinicians by automating dietary intake capture and generating

nutrient summaries suitable for integration with genomic risk scores®™°.

Databases and ontologies for nutrient-gene mapping: The Al-driven nutrigenomics depends on
structured knowledge linking food items and nutrient components to gene expression or metabolic
pathways. Curated nutrigenomic resources and ontologies standardize descriptors (food taxa, nutrient
forms, gene targets), enabling consistent mapping from foods identified by image or self-report to gene-
level effects used by predictive models®™°.
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Fig. 1: Workflow diagram of Al-based nutrigenomic analysis pipeline (self-generated)
The diagram depicts a four-step workflow beginning with data collection, followed by preprocessing, Al model application,
and nutrigenomic analysis, Each stage is represented by a distinct icon and color-coded box connected by arrows and The
flowchart visually summarizes the transformation of raw data into actionable nutrition outcomes
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Table 1: Comparative Al tools and databases for nutrient profiling

Tool/Database Primary function Notes/Applications Citation(s)
Food image Identify foods; estimate CNNSs/transformer-based Liu et al®
recognition (DL) portion and nutrients systems for automated
meal logging

USDA food data Authoritative nutrient Core nutrient reference Liu et al® and Ford et al.
Central composition for downstream mapping
FooDB Food metabolite and bioactive ~ Supports nutrient-gene and Liu et al®

compound database metabolite pathway mapping
NutrigenomeDB/Eat4Genes Curated nutrient-gene Databank of experimental Ford et al.

expression relations nutrigenomic links for models
FoodOn ontology Standardised food descriptors Facilitates cross-dataset Liu et al® and Ford et al."

integration and semantic mapping
Table lists tool/database name, primary function, practical notes and citation to help compare image-recognition and nutrigenomic
resources. Entries include deep-learning food-image systems, USDA FoodData Central, FooDB, NutrigenomeDB/Eat4Genes
and FoodOn ontology, Abbreviations: Al: Artificial intelligence, DL: Deep learning, CNN: Convolutional neural network,
USDA: U.S. Department of Agriculture and DB: Database

Table 1 summarizes core Al tools, image-recognition systems, and curated food/nutrient databases used
for automated nutrient profiling and nutrigenomic mapping. It highlights primary functions and practical
applications (e.g., portion estimation, ontology mapping) that support image-nutrient pipelines. Use of
these resources underpins the section’s discussion of computer-vision and ontology-driven nutrient gene

mapping.

Al for crop biofortification and functional food design: The Al accelerates breeding and metabolic
design workflows that produce nutrient-dense crops and novel functional foods. The Al-driven genomic
selection models and ML-augmented metabolic engineering reduce cycle times and increase the precision
of trait introgression, enabling scalable biofortification programs' .

» Genomicselection in plant breeding: Deep learning models trained on genotype xphenotype panels
improve prediction accuracy for complex, quantitative nutrient traits relative to conventional genomic-
estimation methods. By more accurately predicting breeding value for micronutrient content, Al
enables breeders to select superior parental combinations earlier in breeding cycles, shortening
timelines to release biofortified cultivars''?

+ Al-assisted metabolic engineering for nutrient-rich crops: Within metabolic engineering, ML tools
analyze enzyme kinetics, pathway topology, and gene regulatory networks to nominate edits or
transgenes that reroute flux toward desired micronutrients (e.g., provitamin A, folate, iron chelators).
Al-guided pathway design reduces experimental iterations, enabling more efficient construction of
crops or microbial platforms for functional-ingredient production''

Figure 2 illustrates the Al-assisted biofortification workflow described in of the manuscript, showing how
genomic selection feeds into Al-driven analysis that guides metabolic engineering to produce nutrient-rich
crops.

It emphasizes the two principal approaches discussed in genomic selection in plant breeding and
Al-assisted metabolic engineering and the sequential decisions that shorten breeding cycles and optimize
nutrient pathways.

Arrows indicate data and action flow from genotype-informed selection through Al interpretation to
laboratory pathway edits and, ultimately, field-ready biofortified cultivars.

Sustainability metrics in Al-driven food systems: The Al applications increasingly connect nutrigenomic
and crop-design interventions with environmental assessments, enabling systems-level optimization that
balances nutritional goals with planetary constraints'™.
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Fig. 2: Al-assisted biofortification process flow (self-generated)
Left-to-right and top-to-bottom icons represent: genomic selection (seedling/sail), Al analysis (head with network),
metabolic engineering (laboratory flasks), and nutrient-rich crops (ear of corn), Black arrows between icons denote the
directional workflow; concise labels beneath each icon identify the stage and Simplified icons and a restrained color palette
improve legibility for both print and presentation formats

Table 2: Al applications for reducing carbon and water footprints

Al application Domain Potential impact/Mechanism Citation(s)
Al-enhanced Supply-chain analysis Identifies supply-chain levers Nikkhah et al."®
LCA optimization that can reduce GHG emissions (~46%)

Water-footprint Crop water management High-accuracy water-use estimation Nikkhah et al."®
prediction (ML) enabling targeted conservation

Precision irrigation Field irrigation Schedules irrigation using real-time Nikkhah et al.”* and
(Al control) data to reduce water use Emec et al™
Precision fertilization Nutrient management Reduces excess fertilizer Emeg et al.™
(ML-guided) application and N,O emissions

Maps Al applications to sustainability domains with short notes on mechanisms and expected impacts. Rows include Al-enhanced
LCA optimization, water-footprint prediction, precision irrigation and ML-guided fertilization, Abbreviations: ML: Machine learning,
LCA: Life cycle assessment and Al: Artificial intelligence

Life cycle assessment (LCA) integration with Al: Hybrid frameworks that combine LCA inventories with
machine-learning optimization enable rapid scenario evaluation and highlight interventions (input
substitution, process redesign, logistics optimization) that yield the largest reductions in greenhouse gas
emissions or resource use. These hybrid approaches make LCA outputs actionable by automatically
recommending operational changes informed by predictive models™ ™.

Predictive models for environmental footprint reduction: High-resolution ML models estimate crop
water and carbon footprints at farm and regional scales, enabling precision interventions (irrigation
scheduling, input matching) that reduce resource consumption without sacrificing yield. Predictive
ensembles trained on climatic, soil, and management data have demonstrated high fidelity in water-

footprint estimation and provide decision inputs for water- and carbon-saving strategies™ ™.

Table 2 maps Al methods to sustainability applications discussed in showing how ML and hybrid LCA
approaches reduce environmental impacts. It links specific Al applications (e.g., precision irrigation, LCA
optimization) to their domain and expected mechanism of impact. The table supports the section’s
argument that Al can make environmental trade-offs actionable.

Al IN CLINICAL CARE FOR NUTRITION AND HEALTH

Al-powered clinical decision support for nutrition therapy: The integration of Electronic Health
Records (EHRs) with nutrigenomic data has emerged as a transformative approach in clinical nutrition. By
combining genomic profiles with longitudinal health data, Al-driven Clinical Decision Support Systems
(CDSS) can generate personalized dietary recommendations that account for genetic predispositions to
conditions such as type 2 diabetes, obesity, and cardiovascular disease™.
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Table 3: Al-enabled clinical nutrition decision support systems

Component of system Description Example applications Citation(s)

Data ingestion layer Integration of EHR, Collects patient history, genetic Saseedharan and Lewis™
nutrigenomic, and lifestyle data markers, and dietary logs and Varayil et al.'®

Al analytics engine Predictive modeling, NLP, Forecasts malnutrition, nutrient Varayil et al.'® and Bharmal"
reinforcement learning deficiencies, and disease risk

Decision support interface Clinician dashboards and Provides personalized Bharmal'’
patient-facing apps nutrition recommendations

Feedback loop Continuous learning from Refines dietary Varayil et al.'®
patient outcomes interventions dynamically

Clinical utility Reduces clinician workload, Enhances precision nutrition Saseedharan and Lewis' and
improves patient adherence therapy Varayil et al.'® and Bharmal"

Breaks down system components (data ingestion, analytics engine, interface, feedback loop) with descriptions and example
applications. Shows how EHR, nutrigenomic, wearable, and lifestyle inputs feed an Al analytics engine and clinician/patient interfaces,
Abbreviations: HER: Electronic health record, CDSS: Clinical decision support system, NLP: Natural language processing and
Al: Artificial Intelligence

Machine learning algorithms embedded in EHR platforms can identify nutrient gene interactions, enabling
clinicians to tailor interventions at the molecular level™.

Predictive analytics further enhances diet-related disease management by leveraging large-scale datasets
to forecast patient outcomes. For example, deep learning models trained on EHR and nutrigenomic data
can predict the likelihood of malnutrition, sarcopenia, or micronutrient deficiencies before clinical
symptoms manifest’’.

These systems also support real-time monitoring of dietary adherence, integrating wearable data streams
with clinical records to refine recommendations dynamically.

The architecture of an Al-enabled clinical nutrition decision support system typically includes:

» Data ingestion layer: EHR, nutrigenomic, and lifestyle data

» Al analytics engine: predictive modeling, natural language processing (NLP), and reinforcement
learning

» Decision support interface: clinician dashboards and patient-facing mobile apps

» Feedback loop: continuous learning from patient outcomes to refine algorithms

Such systems have demonstrated improved accuracy in predicting diet-related complications, reduced

clinician workload, and enhanced patient engagement in nutrition therapy™™"'.

Table 3 breaks down components of Al-powered clinical decision support described in (data ingestion,
analytics engine, interfaces, feedback loop). It pairs each component with a concise description and
example application to show how nutrigenomic data are operationalized in clinical workflows. The
Table 3 clarifies the system architecture that underlies clinical personalization claims.

Al in metabolic health monitoring: The rise of wearable sensors and continuous glucose monitoring
(CGM) devices has revolutionized metabolic health tracking. The Al algorithms process the vast streams
of real-time data from CGMs, accelerometers, and smartwatches to detect subtle physiological changes
indicative of metabolic dysregulation.

For instance, Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) have been
applied to CGM data to predict postprandial glucose excursions, enabling proactive dietary
adjustments'®.
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Table 4: Al-based metabolic health monitoring devices and algorithms

Device/Algorithm Data source Al technique Clinical application Citation(s)

Guardian connect Continuous glucose Predictive ML models Alerts for hypoglycemia/ Choubey et al."®

(Medtronic) monitoring (CGM) hyperglycemia

Dexcom G7 CGM+cloud Deep learning Personalized glucose Anwar et al."
integration forglycemic variability ~ trend prediction

Smartwatches Heart rate, sleep, Random forest, CNNs Early detection of Choubey et al®

(Fitbit, apple watch) activity metabolic syndrome

RNN-based CGM CGM time-series Recurrent neural Predicts postprandial Anwar et al."”®

analysis data networks glucose excursions

Gradient boosting Multimodal health data Ensemble learning Stratifies metabolic Choubey et al."®

models syndrome risk and Anwar et al."

Catalogs representative devices/algorithms, their data sources and the Al techniques used for metabolic monitoring. Examples
include CGM systems (Dexcom/Gardian), smartwatches, RNN-based time-series analyses and ensemble models, Abbreviations:
CGM: Continuous glucose monitoring, RNN: Recurrent neural network, CNN: Convolutional neural network and Al: Artificial
intelligence

These models outperform traditional regression-based approaches by capturing nonlinear dynamics in
glucose variability.

Al also plays a pivotal role in the early detection of metabolic syndrome (MetS). By integrating multimodal
data, such as blood pressure, lipid profiles, and anthropometric measures, machine learning classifiers can
identify individuals at high risk of MetS before clinical diagnosis™.

Random forest and gradient boosting models have shown particular promise in stratifying risk across
diverse populations.

Table 4 catalogs representative devices and algorithm classes discussed in linking data sources (e.g., CGM,
smartwatches) to Al techniques and clinical uses. It provides concrete examples (products and model
types) to illustrate the section’s points about real-time metabolic monitoring and prediction. The table
supports comparisons of technique, data input, and clinical application.

Al for personalized dietary interventions in chronic disease: The Al-driven personalization of dietary
interventions has gained traction in managing chronic diseases such as diabetes, cardiovascular disease,
and obesity®.

Case studies demonstrate that Al-generated diet plans, informed by biomarkers and lifestyle data, can
significantly improve glycemic control, lipid profiles, and weight management outcomes®'.

For diabetes, reinforcement learning algorithms have been applied to adapt dietary recommendations in
real time, adjusting macronutrient composition based on continuous glucose monitoring feedback®?'.

In cardiovascular disease, Al models integrate dietary intake with imaging and biomarker data to optimize
heart-healthy diets, such as the DASH or Mediterranean diet”".

Obesity management has benefited from Al-driven behavioral nudges delivered via mobile apps, which
personalize caloric targets and meal timing strategies.

The flowchart of Al-driven adaptive dietary intervention typically includes:

» Data collection: Biomarkers, wearable data, patient-reported outcomes
» Al processing: Reinforcement learning and predictive modeling

* Personalized intervention: Adaptive meal plans and behavioral prompts
*  Outcome monitoring: Continuous feedback loop for refinement
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Table 5: Al-driven personalized dietary interventions in chronic disease

Chronic disease Al approach Intervention strategy Clinical outcome Citation(s)
Diabetes Reinforcement learning Adaptive macronutrient Improved glycemic Wang et al®
with CGM feedback adjustments control
Cardiovascular disease  Predictive modeling Optimized DASH/ Reduced CVD risk Wang et al.®
with biomarkers and Mediterranean markers
imaging diet plans
Obesity Al-driven behavioral Personalized caloric Enhanced weight loss ~ Wang et al.*®
nudges via mobile apps targets and meal timing adherence
Multi-disease Hybrid Al models Adaptive diet plans Improved long-term Gavai and
management integrating lifestyle+ across comorbidities adherence van Hillegersberg®
biomarkers
Patient engagement Conversational Al and Real-time feedback Higher adherence Gavai and
mobile coaching and motivation rates van Hillegersberg®’

Pairs chronic conditions with Al approaches, intervention strategies and reported clinical outcomes. Rows include diabetes
(reinforcement-learning with CGM feedback), CVD (predictive modeling+biomarkers) and obesity (behavioral nudges via apps),
Abbreviations: RL: Reinforcement learning, CVD: Cardiovascular disease, CGM: Continuous glucose monitoring and Al: Artificial
intelligence

These adaptive systems have demonstrated superior adherence rates compared to static diet plans,
highlighting the potential of Al to transform chronic disease management®*?'.

Table 5 summarizes Al approaches for chronic-disease dietary management covered in pairing diseases
(diabetes, CVD, obesity) with algorithmic strategies and measured outcomes. It clarifies which Al methods
(e.g., reinforcement learning, predictive modeling) map to which intervention strategies and clinical
endpoints. The table condenses case-study evidence supporting adaptive, Al-tailored diets.

Al in public health nutrition surveillance: At the population level, Al has become indispensable in
nutrition surveillance. Machine learning models analyze dietary intake data from national surveys, retail
purchase records, and social media to identify emerging dietary patterns®.

For example, natural language processing applied to food diaries and online discussions can reveal shifts
in consumption trends, such as increased plant-based diets or ultra-processed food intake®.

Predictive modeling has also been employed to forecast malnutrition and obesity trends. By integrating
socioeconomic, environmental, and dietary data, Al systems can predict hotspots of undernutrition or
obesity, guiding targeted public health interventions®.

These models have been used to simulate the impact of policy measures, such as sugar taxes or food
subsidy programs, on population dietary behaviors.

Table 6 lists model classes and primary data sources used for population-level nutrition surveillance as
discussed in alongside intended public-health impacts. It showcases how NLP, deep learning, Bayesian
networks and random-forest models are applied to surveys, satellite imagery and social media. The table
highlights surveillance use-cases and the policy-relevant outputs each model class can generate.

ENGINEERING INNOVATIONS FOR AlI-ENABLED FOOD AND HEALTH SYSTEMS

Smart food production systems: The integration of loT-enabled precision agriculture with Al has
transformed farming into a data-driven enterprise. Smart sensors now monitor soil moisture, nutrient
levels, and microclimatic conditions in real time, enabling farmers to optimize irrigation, fertilization, and
pest control strategies®.

The Al algorithms process these heterogeneous data streams to generate predictive models that guide
planting schedules, crop rotation, and yield forecasting®.
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Table 6: Al models in public health nutrition surveillance

Al model Data source Application Public health impact Citation(s)
Random forest models National dietary surveys Predict obesity prevalence  Guides obesity An and Wang®
prevention programs

Deep learning models  Satellite imagery of food Identifies food deserts and ~ Supports urban Ferreira et al®
environments obesogenic areas planning and food policy

Bayesian networks Socioeconomic+dietary Forecasts malnutrition risk ~ Targets vulnerable Ferreira et al®
data populations and Mendesetal®

NLP-based models Food diaries, social media  Detects emerging dietary Monitors shifts in Ferreira et al® and

trends population diet Mendes et al.**
Predictive policy Integrated socioeconomic+ Models impact of sugar Informs national Mendes et al*
simulations nutrition datasets taxes, subsidies nutrition policy

Lists Al model classes, primary data sources, applications and the public-health impacts they generate. Includes random-forest
models on national surveys, deep learning on satellite imagery, Bayesian networks on socioeconomic+diet data, and NLP on
diaries/social media, Abbreviations: RF: Random forest, DL: Deep learning, BN: Bayesian network, NLP: Natural language processing
and ML: Machine learning

Table 7: Smart food production systems

Technology Application Benefits Citation(s)

loT soil sensors Monitor soil moisture, Precision irrigation and fertilization Miller et al.®
nutrients

Al crop models Predict yield, detect stress Optimized planting and harvesting Miller et al.** and

Chaurasiya et al.*®

Vertical farming Al Climate and nutrient control Year-round production, reduced water use Chaurasiya et al.?®

Robotics in farming Automated seeding, Reduced labor costs, higher efficiency Chaurasiya et al?®
harvesting and Oh and Lu®”

Cloud-based platforms Remote monitoring and Scalable smart farm management Oh and Lu?
analytics

Itemizes smart-farm technologies, their specific applications and the main productivity/sustainability benefits. Entries include loT
soil sensors, Al crop models, vertical/controlled-environment farming systems, robotics and cloud platforms, Abbreviations:
loT: Internet of things, Al: Artificial Intelligence; CEA: Controlled-environment agriculture and SW/HW: Software/hardware
(where applicable)

Vertical farming and controlled environment agriculture (CEA) represent another frontier. By leveraging
Al-driven climate control systems, vertical farms can regulate light spectra, CO, concentration, and nutrient
delivery to maximize crop productivity®’.

These systems reduce water consumption by up to 90% compared to traditional agriculture, while
minimizing pesticide use and ensuring year-round production.

The smart farm architecture integrates loT sensors, robotics, and Al analytics into a closed-loop
system:

» |oT sensors capture soil, plant, and environmental data

» The Al analytics optimize resource allocation and predict crop stress
» Robotics automate seeding, harvesting, and crop monitoring

» Cloud platforms enable remote decision-making and scalability

This convergence enhances sustainability, reduces labor dependency, and improves resilience against

climate variability®?’.

Table 7 itemizes smart-farm technologies described in matching each technology (IoT soil sensors, Al crop
models, vertical-farm Al, robotics, cloud platforms) with applications and primary benefits. It provides a
quick reference that connects specific engineering tools to sustainability and productivity outcomes. The
table supports the section’s claims about closed-loop farm optimization.
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Table 8: Al applications in food safety and quality control

Al Application Technology Use case Benefits Citation(s)
Contamination Computer vision+ Identify microbial/foreign Real-time safety Dhal and Kar®
detection CNNs objects assurance
Shelf-life prediction Machine learning Predict spoilage Reduced food waste Dhal and Kar®
regression timelines
Predictive maintenance Sensor data+ML Anticipate equipment Reduced downtime, Dhal and Kar®
models failure safer production and Song et al.®®
Automated quality Vision+NLP Detect texture, color, defects Consistency in
control food quality Song et al*®
Risk modeling Al+loT integration Hazard analysis Proactive safety
management Song et al*®

Summarizes Al use-cases in processing and safety, listing technologies, use-cases and operational benefits (e.g., real-time
contamination detection, shelf-life prediction). Rows cover computer-vision contamination detection, ML shelf-life regression,
predictive maintenance from sensor data and automated quality control, Abbreviations: CNN: Convolutional neural network,
ML: Machine learning, IoT: Internet of Things, Al: Artificial intelligence and NLP: Natural language processing

Al in food processing and safety engineering: Food safety remains a global challenge, with
contamination incidents causing significant health and economic burdens. Computer vision systems
powered by deep learning are increasingly deployed in food processing plants to detect microbial
contamination, foreign objects, and quality defects®.

These systems outperform manual inspection by providing real-time, high-resolution analysis of food
products on production lines.

Predictive maintenance is another critical application. The Al models analyze sensor data from machinery,
such as vibration, temperature, and acoustic signals, to predict equipment failures before they occur®.

This reduces downtime, prevents contamination risks from malfunctioning equipment, and lowers
operational costs.

Together, these innovations enhance food safety, improve quality assurance, and strengthen consumer

trust?2°,

Table 8 summarizes Al use-cases in processing and safety discussed in pairing each Al application
(contamination detection, shelf-life prediction, predictive maintenance) with the enabling technology
and the operational benefit. It clarifies how real-time vision and sensor analytics reduce
risks and downtime. The table acts as a concise inventory for food-safety engineering
interventions.

Al-driven supply chain optimization for sustainable food distribution: The food supply chain
faces challenges of demand variability, waste, and traceability. Al-driven demand forecasting
models use historical sales, weather data, and consumer behavior to predict demand with high
accuracy™.

This reduces overproduction, minimizes waste, and ensures timely distribution.

Blockchain integration enhances traceability by creating immutable records of food movement across the
supply chain®'.

When combined with Al, blockchain enables real-time fraud detection, contamination source tracing, and
compliance monitoring®.
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Table 9: Al in sustainable food supply chain optimization

Application Al/Tech used Benefits Citation(s)
Demand forecasting ML, deep learning Reduced waste, accurate planning Chen et al.®
Route optimization Al logistics models Lower emissions, faster delivery Chen et al.®
Blockchain traceability Blockchain+Al Fraud prevention, transparency Zhu et al®>
Inventory optimization Predictive analytics Reduced spoilage, cost savings Qian et al.*
Sustainability tracking Al+loT Carbon footprint monitoring Qian et al.*

Lists supply-chain applications (demand forecasting, route optimization, blockchain traceability, inventory and sustainability tracking)
with Al/tech and benefits. Shows how ML/AI forecasts and blockchain-ledgers combine with |oT to reduce waste, lower emissions
and improve traceability, Abbreviations: ML: Machine learning, Al: Artificial intelligence, loT: Internet of things and BC: Blockchain

The Al-enabled sustainable food supply chain model includes:

« Data collection: [oT sensors, retail data, logistics

+ The Al forecasting: Demand prediction, route optimization
« Blockchain ledger: Transparent traceability

e Sustainability metrics: Carbon footprint, waste reduction

This integration improves efficiency, reduces environmental impact, and strengthens consumer
confidence®*,

Table 9 lists supply-chain applications (demand forecasting, route optimization, blockchain traceability,
inventory optimization, sustainability tracking) discussed and the Al/tech used for each. It links each
application to its operational benefit (waste reduction, lower emissions, fraud prevention). The table
synthesizes the section’s proposed model for Al+blockchain-enabled sustainable distribution.

Human-Al collaboration in food and health engineering: The success of Al in food and health systems
depends on human Al collaboration. The Co-design approaches involving nutritionists, clinicians, and
engineers ensure that Al tools are user-centered, clinically relevant, and ethically aligned®.

Collaborative design workshops have shown that involving domain experts improves algorithm
interpretability and adoption.

Ethical and regulatory considerations are equally critical. Issues such as data privacy, algorithmic bias, and
accountability must be addressed to ensure trust in Al systems®.

Regulatory frameworks are emerging to guide responsible Al deployment in food and health engineering,
emphasizing transparency, fairness, and human oversight®.

This collaboration ensures that Al augments rather than replaces human expertise, fostering innovation
while safeguarding ethical standards®~°.

Table 10 maps ethical principles (transparency, fairness, accountability, privacy, human-centric design)
described in to concrete frameworks/guidelines and their application in food-health Al systems. It clarifies
governance levers and recommended practices for trustworthy deployment. The table supports the
section’s emphasis on co-design and regulatory alignment.

RECOMMENDATION AND FUTURE PERSPECTIVES

Artificial intelligence holds real promise for nutrigenomics, food engineering and clinical nutrition, but
realizing that promise requires practical, people centered action. We recommend three mutually
reinforcing priorities. First, strengthen data governance and adopt open, interoperable ontologies so that
datasets can be combined responsibly and traced back to their origin. Second, commit to prospective,
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Table 10: Ethical frameworks and guidelines for ai in food-health systems

Ethical principle Framework/Guideline Application in food-Health Al Citation(s)
Transparency EU Al Act, FDA guidelines Explainable Al in nutrition tools Jumper et al.*
Fairness IEEE Ethically Aligned Design Avoid bias in dietary algorithms Payili**
Accountability WHO digital health ethics Human oversight in Al decisions Agrawal et al.*®
Privacy and security GDPR, HIPAA Protect patient and consumer data Jumper et al®
and Payili**
Human-centric design Co-design methodologies Collaboration with clinicians/nutritionists Agrawal et al.*®

Maps ethical principles to concrete frameworks/guidelines and their application in food-health Al deployments. Entries include
transparency (EU Al Act/FDA guidance), fairness (IEEE EAD), accountability (WHO digital health ethics), and privacy (GDPR/HIPAA),
Abbreviations: EU Al Act: European union Al act, FDA: U.S. Food and drug administration, WHO: World health organization,
GDPR: General data protection regulation, HIPAA: Health insurance portability and accountability Act, IEEE EAD: IEEE ethically aligned
design and Al: Artificial intelligence

multi site model validation using diverse cohorts and realistic field data to make sure tools work beyond
the lab. Third, embed human centered design from the start so that equity, explainability and usability
guide both research and deployment. These foundational steps will reduce bias, build clinician and public
trust, and accelerate safe translation into practice®®®.

On the research and engineering side, we urge focused investment in longitudinal, multi cohort clinical
studies that connect genomic, microbiome, clinical and behavior data to clear health outcomes. Build
modular, interoperable platforms that enable federated learning and privacy preserving analytics so
institutions can collaborate without exposing sensitive data. Pair Al model development with life cycle
assessment and supply chain impact evaluation so nutritional gains do not come at the expense of
planetary health. Equip biochemists, nutritionists and engineers with applied Al literacy and support cross
discipline teams that can translate algorithmic insights into safe laboratory and clinical practice. These
measures reflect and extend recent work on integrating Al into biomolecular research®.

Practical implementation also needs supportive policy, funding and governance. Funders should create
targeted streams for implementation research in low resource settings and for independent validation
studies. Regulators, industry and civil society should require transparent model documentation, versioned
audit trails and accessible model cards so decisions informed by Al are auditable and explainable. Convene
multi stakeholder governance fora that include researchers, clinicians, community representatives and
industry to steward deployment and to align incentives with public health and sustainability®.

Finally, promote open science as the default. Shared, well curated datasets and reproducible pipelines
accelerate progress and reduce duplication. Incentivize reproducible code release, curated benchmark
datasets and registered reports so that findings are verifiable and translatable. Encourage partnerships
that pair technological innovation with implementation science so that promising tools mature into usable,
safe interventions. These recommendations align with recent analyses on Al integration in biochemistry
and biomedical sciences®®*’. By centering ethics, transparency and collaboration we can move from
individual proofs of concept to durable improvements in nutrition and health®*%.

CONCLUSION

Based on the integrated review and analyses presented in this manuscript, Al-enabled nutrigenomics and
engineering innovations demonstrate strong potential to personalize nutrition and advance sustainable
food systems. Machine-learning frameworks for genomic interpretation, computer-vision nutrient
profiling, and Al-assisted biofortification collectively offer scalable routes to improve nutrient outcomes
while lowering environmental footprints. Clinical deployment of Al-via EHR-integrated decision support,
CGM-informed adaptive diets, and wearable-enabled monitoring can enhance prevention and
management of diet-related disease when validated in diverse populations. Engineering advances
(loT-driven precision agriculture, vertical farming, and Al-optimized logistics with blockchain traceability)
provide actionable mechanisms to reduce waste, water use, and emissions across supply chains. Robust
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validation, data interoperability, and transparent governance are prerequisites for safe, equitable adoption;
attention to algorithmic bias, privacy and regulatory compliance must guide implementation. Overall, the
manuscript outlines a pragmatic agenda that balances technological innovation with ethical, regulatory
and socioecological safeguards to realize Al-driven nutrition and food systems at scale.

SIGNIFICANCE STATEMENT

This manuscript synthesizes advances in Al applications across nutrigenomics, crop biofortification, food
processing, supply chain engineering and clinical nutrition, highlighting integrated pathways to improve
nutrition and sustainability. It shows how machine learning, computer vision and metabolic engineering
can accelerate development of nutrient rich crops and enable precision dietary interventions. The review
underscores systems level integration with life cycle assessment and supply chain analytics to align
nutritional objectives with environmental constraints. Ethical governance, data interoperability and
rigorous validation are identified as prerequisites for equitable, safe and transparent deployment. Priority
future actions include longitudinal multi cohort studies, standardized ontologies and open data practices
to strengthen model generalizability and reproducibility. By combining technical, policy and codesign
perspectives, the manuscript offers a pragmatic roadmap for translating Al enabled innovations into
scalable, equitable food and health solutions.
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